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In the last decade, several transformations of an imperative program into a logically constrained term
rewrite system (LCTRS, for short) have been investigated and extended. They do not preserve the
nesting of statements, generating rewrite rules like transition systems, while function calls are rep-
resented by the nesting of function symbols. Structural features of the original program must often
be useful in analyzing the transformed LCTRS, but, to use such features, we have to know how to
transform the program into the LCTRS, to keep the correspondence between statements in the pro-
gram and the introduced auxiliary function symbols in the LCTRS, or to transform the LCTRS into a
control flow graph to recover loop information. In this paper, we propose a nesting-preserving trans-
formation of a SIMP program (a C integer program) into an LCTRS. The transformation is mostly
based on previous work and introduces the nesting of function symbols that correspond to statements
in the original program. To be more precise, we propose a construction of a tree homomorphism
which is used as a post-process of the transformation in previous work, i.e., which is applied to the
LCTRS obtained from the program. As a correctness of the nesting-preserving transformation, we
show that the tree homomorphism is sound and complete for the reduction of the LCTRS.

1 Introduction

In the last decade, approaches to program verification by means of logically constrained term rewrite
systems (LCTRSs, for short) [13] are well investigated [7, 17, 4, 15, 8, 9, 12, 10, 11]. LCTRSs are known
to be useful as computation models of not only functional but also imperative programs. Especially,
equivalence checking by means of LCTRSs is useful to ensure correctness of terminating functions
(cf. [7]). Here, equivalence of two functions means that for every input, the functions return the same
output or end with the same projection of final configurations.

The transformation in [7] for SIMP programs1 [6] (C integer programs2) has been extended to global
variables and function calls [8]. Then, the extended transformation has further been extended to concur-
rent ones with semaphore-based exclusive control [12]. A general ultimate goal is to apply LCTRSs to
verification of practical programs, e.g., automotive embedded systems.

*This work was partially supported by JSPS KAKENHI Grant Number 18K11160 and DENSO Corporation.
1A SIMP program is originally a statement consisting of assignment, sequencing, conditionals, loops, and integer variables.

On the other hand, a SIMP program in [7, 8] and this paper is a collection of function declarations which are defined by a
statement with return statement and without any function call.

2https://termination-portal.org/wiki/C_Integer_Programs
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Program 1: a SIMP program Ploop with a triple loop

1 int loop(int n) {
2 int ret = 0;
3 int i = 0;
4 while( i < n ) {
5 int j = 0;
6 while( j < i ) {
7 int k = 0;
8 while( k < j ) {
9 ret = ret + 1;

10 k = k + 1;
11 }
12 j = j + 1;
13 }
14 i = i + 1;
15 }
16 return ret;
17 }

In the transformations mentioned above, function calls are represented by the nesting of function
symbols such as call stacks: In [7], the auxiliary function symbol for a statement with a function call
has an argument to store the execution of the called function; in [8], a function symbol introduced for
configurations stores a call stack as an argument. On the other hand, the nesting of statements is not
preserved as any structural feature of LCTRSs.

Example 1.1 Let us consider Program 1 which is a SIMP program which is executed like C language.3

Program 1 is transformed into the LCTRS Rloop in Figure 1 [7] (cf. [3]). For some reason explained in
Example 1.2 below, we do not explain the detail of the transformation, e.g., the meaning of the introduced
auxiliary function symbols such as loop2.

The while statements are nested, but Rloop does not have the nesting of any function symbol that is
neither a value nor a built-in operator. If we know how to transform Program 1 into Rloop in detail, we
would be able to transform Rloop back into Program 1. In this case, we do not have to keep Program 1
because we can know it by transforming Rloop back into a program. In the case where we have the
LCTRS but not either the original program or the transformation process, we would be able to transform
the LCTRS into a control flow graph which corresponds to a SIMP program and to, e.g., recover loop
information by means of control flow analysis (cf. [1]).

To make the analysis of the transformed LCTRS easier, we often simplify it by composing two or
more successive rules. LCTRS Rloop is simplified to the LCTRS R′

loop in Figure 2. For example, the
first three rules of Rloop are composed to the first rule of R′

loop. For such a simplified LCTRS, we
would be able to recover loop information by means of a control flow graph obtained from the simplified
LCTRS.

Let P be a SIMP program and T be a transformation of SIMP programs into LCTRSs such that T
has some sufficient properties to analyze P by means of the resulting LCTRS T(P). For example, to

3Unlike C language, the range of variables with type int is not the 32-bit integers but the integers.
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Rloop =



loop(n)→ loop2(n)
loop2(n)→ loop3(n,0)

loop3(n,ret)→ loop4(n,ret,0)
loop4(n,ret, i)→ loop5(n,ret, i) [ i < n ]
loop4(n,ret, i)→ loop16(n,ret, i) [¬(i < n) ]
loop5(n,ret, i)→ loop6(n,ret, i,0)

loop6(n,ret, i, j)→ loop7(n,ret, i, j) [ j < i ]
loop6(n,ret, i, j)→ loop14(n,ret, i) [ ¬( j < i) ]
loop7(n,ret, i, j)→ loop8(n,ret, i, j,0)

loop8(n,ret, i, j,k)→ loop9(n,ret, i, j,k) [ k < j ]
loop8(n,ret, i, j,k)→ loop12(n,ret, i, j) [¬(k < j) ]
loop9(n,ret, i, j,k)→ loop10(n,ret +1, i, j,k)
loop10(n,ret, i, j,k)→ loop8(n,ret, i, j,k+1)
loop12(n,ret, i, j)→ loop6(n,ret, i, j+1)
loop14(n,ret, i)→ loop4(n,ret, i+1)
loop16(n,ret, i)→ return(ret)


Figure 1: the LCTRS Rloop obtained from Program 1 [7].

R′
loop =



loop(n)→ loop4(n,0,0)
loop4(n,ret, i)→ loop6(n,ret, i,0) [ i < n ]
loop4(n,ret, i)→ return(ret) [¬(i < n) ]

loop6(n,ret, i, j)→ loop8(n,ret, i, j,0) [ j < i ]
loop6(n,ret, i, j)→ loop4(n,ret, i+1) [ ¬( j < i) ]

loop8(n,ret, i, j,k)→ loop8(n,ret +1, i, j,k+1) [ k < j ]
loop8(n,ret, i, j,k)→ loop6(n,ret, i, j+1) [¬(k < j) ]


Figure 2: the LCTRS R′

loop obtained from Rloop by the simplification based on chaining [7].

prove termination of P , it is expected that termination of the LCTRS T(P) implies termination of any
execution of P . Note that the resulting LCTRS T(P) does not have to be transformed back into the
original program P . On the other hand, some syntactic features of the program P would be useful for
the analysis of the LCTRS T(P).

It is worth developing theories and methods for LCTRSs themselves, and it is meaningful enough to
focus only on LCTRSs and to e.g., analyze T(P) without meta-information such as the transformation
process and the meaning of the introduced auxiliary function symbols. For this reason, we do not want
to rely on such meta-information, do not want LCTRSs to keep it, and do not transform LCTRSs into
control flow graphs to e.g., recover loop information.

Example 1.2 Let us consider which function symbols in R′
loop in Figure 2 correspond to the inner loops

of Ploop in Program 1. The answer is that

• loop4 represents the outermost one,

• loop6 represents the second outer one, and

• loop8 represents the innermost one.
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The transformation process can provide the above correspondences.
Let us now assume that we do not know how the LCTRS R′

loop is obtained from Program 1 and what
the function symbols loopi mean. From the third rule with the right-hand side return(ret), we guess the
first correspondence above; then, from the fifth rule with the right-hand side loop4(n,ret, i+1), we guess
the second one above; finally, we guess the remaining one.

The heuristic analysis in Example 1.2 needs a sort of graph traversal like control flow analysis, which
may be expensive for what we want to know. For this reason, we would like to avoid such traversal-based
analysis.

For e.g., the analysis in Example 1.2, what we can rely on must be structural features. In applying T
to P , some structural features of P can be preserved as structural features of T(P). Structural features
of LCTRSs are mainly related to rewrite rules and terms. Rewrite rules may be simplified in advance in
order to e.g., ease the analysis. For this reason, we focus on structural features of terms in LCTRSs. One
of the simplest structural features of the original program P and the resulting LCTRS T(P) must be the
nesting of statements and function symbols, respectively.

In this paper, we propose a nesting-preserving transformation of a SIMP program into an LCTRS.
The transformation Tnp is mostly based on previous work and introduces the nesting of function symbols
that correspond to statements in the original program. For example, instead of loop7(n,ret, i, j) in Rloop,
we generate loop4(n,ret, i, loop6( j, loop7)).

To propose Tnp, we use the transformation T in previous work but do not modify T. Instead, we
propose a construction of an injective tree homomorphism [5] as a post-process of T, which is applied
to T(P) (Section 3). We prove correctness of the nesting-preserving transformation by showing that the
tree homomorphism is sound and complete for the reduction of T(P) (Section 4). Our transformation
proceeds as follows: Given a SIMP program P,

1. we apply T to P , obtaining the LCTRS T(P) and the correspondence between introduced auxiliary
function symbols and statements in P;

2. using the correspondence, we define an injective tree homomorphism ξP for the introduced func-
tion symbols such that ξP is ε-free, linear, complete [5, Section 1.4], and syntactically injective—
for each function symbol f , ξP( f ) includes f and f does not appear in ξP(g) for any g ̸= f ;

3. we apply ξP to T(P), defining Tnp as follows:

Tnp(P) = {ξP(ℓ)→ ξP(r) [φ ] | ℓ→ r [φ ] ∈ T(P)}

Note that the signature of Tnp(P) is not the same as that of T(P), while their theory signatures are the
same. Note also that the inverse relation of ξP is a mapping, i.e., ξ

−1
P is well defined. It follows from the

properties of ξP that ξP is sound and complete for the reduction of T(P): For any natural number n and
any term s over the signature of T(P),

• for any term t over the signature of T(P), if s →n
T(P) t, then ξP(s)→n

Tnp(P) ξP(t), and

• for any term t ′ over the signature of Tnp(P), if ξP(s) →n
Tnp(P) t ′, then ξ

−1
P (t ′) is defined and

s →n
T(P) ξ

−1
P (t ′).

To define ξP , we use the correspondence between the introduced auxiliary function symbols and
statements in P , which we do not want to keep. Though, the use of the correspondence is temporal, and
we do not keep it after the application of Tnp to P . In addition, thanks to the invertibility of ξP , it is easy



N. Nishida, M. Kojima, & A. Matsumi 5

to obtain T(P) from Tnp(P) without the correspondence or even ξP . The application of ξ
−1
P to Tnp(P)

is just a flattening for the nesting of the auxiliary function symbols.
An advantage of the above approach (i.e., the use of ξP ) is that we do not have to prove correctness

of transforming SIMP programs into LCTRSs, and it suffices to prove soundness and completeness of ξP
for the reduction of the LCTRS T(P). In general, the correctness proof of transformations of programs
into LCTRSs is very complicated. Our approach relies on the correctness of T. On the other hand, the
soundness and completeness proof of ξP is not so complicated, and there already exist similar proofs in
e.g., [14, Section 6.1].

2 Logically Constrained Term Rewrite Systems

In this section, we briefly recall logically constrained term rewrite systems [13, 7]. Familiarity with basic
notions on term rewriting [2, 16] is assumed.

A logically constrained term rewrite systems (LCTRS, for short) is a set R of constrained rewrite
rules ℓ→ r [φ ] over a signature Σ consisting of two signatures Σtheory and Σterm: Σ = Σtheory ∪Σterm. The
theory signature Σtheory defines built-in objects—values in Val (⊆Σtheory) and operators—and is equipped
with interpretations I and J : For each theory sort ι , I specifies the universe of ι , and J assigns to a
ground term with ι to an element in I(ι). The non-theory signature Σterm is a set of function symbols
for user-defined functions and constructors. The constrained rewrite rules in R specify the behavior of
some function symbols in Σterm. We require that Σterm ∩Σtheory ⊆ Val. The sorts occurring in Σtheory are
called theory sorts, and the symbols theory symbols. Symbols in Σtheory \Val are calculation symbols. A
term in T (Σtheory,V) is called a theory term. For ground theory terms, we define the interpretation J ·K
as J f (s1, . . . ,sn)K = J ( f )(Js1 K, . . . ,Jsn K). Note that for every ground theory term s, there is a unique
value-constant c such that JsK = JcK. We may use infix notation for calculation symbols.

We typically choose a theory signature with Σtheory ⊇ Σcore
theory, where Σcore

theory includes bool, a sort
of Booleans, such that Valbool = {true, false} and I(bool) = {⊤,⊥}, Σcore

theory = Valbool ∪ {∧,∨, =⇒ :
bool × bool ⇒ bool, ¬ : bool ⇒ bool} ∪ {=ι , ̸=ι : ι × ι ⇒ bool | ι is a theory sort in Σtheory}, and J
interprets these symbols as expected: J (true) =⊤ and J (false) =⊥. We omit the sort subscripts from
=ι and ̸=ι when they are clear from context. A theory term with sort bool is called a constraint.

The standard integer signature Σint
theory is Σcore

theory ∪{+,−,×,exp,div,mod : int× int ⇒ int}∪{≥,> :
int× int ⇒ bool}∪Valint where S ⊇ {int,bool}, Valint = {n : int | n ∈ Z}, I(int) = Z, and J (n) = n.
Note that we use n (in sans-serif font) as the function symbol for n ∈ Z (in math font). We define J in
the natural way.

A constrained rewrite rule is a triple ℓ → r [φ ] such that ℓ and r are terms of the same sort, φ is
a constraint, and ℓ has the form f (ℓ1, . . . , ℓn) that is not a theory term. If φ = true, then we may write
ℓ→ r. We define LVar(ℓ→ r [φ ]) as Var(φ)∪ (Var(r)\Var(ℓ)). We say that a substitution γ respects
ℓ→ r [φ ] if Ran(γ|LVar(ℓ→r [φ ]))⊆Val and Jφγ K=⊤. Note that it is allowed to have Var(r) ̸⊆ Var(ℓ).
Given a set R of constrained rewrite rules, Rcalc denotes the set { f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn)] |
f ∈ Σtheory \Val, x1, . . . ,xn,y ∈ V}. The elements of Rcalc are also called constrained rewrite rules (or
calculation rules) even though their left-hand side is a theory term. The rewrite relation →R is a binary
relation on terms, defined as follows: for a term s, s[ℓγ]p →R s[rγ]p if ℓ → r [φ ] ∈ R∪Rcalc and γ

respects ℓ→ r [φ ].

Example 2.1 Let S = {int,bool}, Σ = Σterm ∪Σint
theory and Σterm = {fact : int ⇒ int}∪{n : int | n ∈ Z}.

To implement an LCTRS calculating the factorial function over Z, we use the signature Σ above and the
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following LCTRS:

Rfact =


fact(x)→ subfact(x,1)

subfact(x,y)→ y [0≥ x ]
subfact(x,y)→ subfact(x′,y′) [x > 0∧ x′ = x−1∧ y′ = x× y ]


The term fact(3) is reduced by Rfact to 6: fact(3) →Rfact

subfact(3,1) →Rfact
subfact(2,3) →Rfact

subfact(1,6)→Rfact
subfact(0,6)→Rfact

6.

3 A Nesting-Preserving Transformation

In this section, using Ploop and Rloop in Program 1 and Figure 1, respectively, we explain an overview
of our nesting-preserving transformation and formulate the transformation using tree homomorphims.

We assume that each statement in a SIMP program P has a unique label ρ , and we use line numbers
as such labels. We consider the sequential composition “;” as the list concatenation, and exclude it from
the nesting of statements. The while statements on Lines 4–15, 6–13, and 8–11 have the nesting.

We first explain the nesting-preserving transformation of the outermost while statement on Lines 4–
15. Any configuration at the beginning of Line 4 is of the form loop4(n,ret, i). During the execution of
the while statement, we keep the symbol loop4, and thus, the symbol does not reduce to other symbols
until completing the execution of the corresponding while statement. Instead, we add an extra argument
to loop4, and the argument is used to represent the execution of the body of the while statement as
follows:

• To represent the entry location of the body, we introduce a fresh constant ent.

• We replace loop4(tn, tret, ti) in Rloop by loop4(tn, tret, ti,ent).

• The location just before the local-variable declaration int j = 0; on Line 5 is represented by
loop5, and we put it into the last argument of loop4. To this end, we replace loop5(tn, tret, ti) in
Rloop by loop4(tn, tret, ti, loop5).

• The location at the beginning of Line 6 is represented by loop6(tj,ent) which is again stored as the
last argument of loop4. The new loop6 keeps the value stored in program variable j instead of loop4
in Rloop. In addition, since loop6 represents a while statement with the nesting of statements, we
make loop6 have the second argument for the execution of the body of the corresponding while
statement. To this end, we replace loop6(tn, tret, ti, tj) in Rloop by loop4(tn, tret, ti, loop6(tj,ent)).

• We repeat the same for the inner while statements represented by loop6 and loop8.

• The location just before the assignment i = i + 1; on Line 14 is represented by loop14, and
we put it into the last argument of loop4. To this end, we replace loop14(tn, tret, ti) in Rloop by
loop4(tn, tret, ti, loop14).

The resulting LCTRS is illustrated in Figure 3.
What we did to preserve the nesting of statements is just a replacement of terms, and can be formu-

lated by a tree homomorphism.

Definition 3.1 (tree homomorphism [5, Section 1.4]) Let Σ and Σ′ be signatures, possibly not disjoint.
For each n ≥ 0, we define the set Xn of n variables such that Xn = {x1, . . . ,xn} ⊆ V . Let ξΣ be a
mapping which associates with each f ∈ Σ of arity n a term in T (Σ′,Xn): ξΣ( f ) ∈ T (Σ′,Xn). The tree
homomorphism ξ : T (Σ,V)→ T (Σ′,V) determined by ξΣ is inductively defined as follows:
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loop(n)→ loop2(n)
loop2(n)→ loop3(n,0)

loop3(n,ret)→ loop4(n,ret,0,ent)
loop4(n,ret, i,ent)→ loop4(n,ret, i, loop5) [ i < n ]
loop4(n,ret, i,ent)→ loop16(n,ret, i) [¬(i < n) ]

loop4(n,ret, i, loop5)→ loop4(n,ret, i, loop6(0,ent))
loop4(n,ret, i, loop6( j,ent))→ loop4(n,ret, i, loop6( j, loop7)) [ j < i ]
loop4(n,ret, i, loop6( j,ent))→ loop4(n,ret, i, loop14) [ ¬( j < i) ]

loop4(n,ret, i, loop6( j, loop7))→ loop4(n,ret, i, loop6( j, loop8(0,ent)))
loop4(n,ret, i, loop6( j, loop8(k,ent)))→ loop4(n,ret, i, loop6( j, loop8(k, loop9))) [ k < j ]
loop4(n,ret, i, loop6( j, loop8(k,ent)))→ loop4(n,ret, i, loop6( j, loop12)) [¬(k < j) ]

loop4(n,ret, i, loop6( j, loop8(k, loop9)))→ loop4(n,ret +1, i, loop6( j, loop8(k, loop10)))
loop4(n,ret, i, loop6( j, loop8(k, loop10)))→ loop4(n,ret, i, loop6( j, loop8(k+1,ent)))

loop4(n,ret, i, loop6( j, loop12))→ loop4(n,ret, i, loop6( j+1,ent))
loop4(n,ret, i, loop14)→ loop4(n,ret, i+1,ent)

loop16(n,ret, i)→ return(ret)


Figure 3: the nesting-preserved LCTRS obtained from Program 1 [7].

• ξ (x) = x for a variable x ∈ V , and

• ξ ( f (t1, . . . , tn)) = ξΣ( f ){xi 7→ ξ (ti) | 1 ≤ i ≤ n} for an n-ary function symbol f ∈ Σ.

A tree homomorphism ξ determined by ξΣ is called

• linear if ξΣ( f ) is a linear term for all f ∈ Σ,

• ε-free if ξΣ( f ) is not a variable for any f ∈ Σ, and

• complete if Var(ξΣ( f )) = Xn for all n-ary f ∈ Σ.

Note that not all tree homomorphisms are surjective.
To consider injective tree homomorphisms, we show a syntactic sufficient condition for injectivity of

tree homomorphisms.

Definition 3.2 For a term t, we denote by Syms(t) the set of function symbols in t. A complete tree
homomorphism ξ determined by ξΣ for Σ is called syntactically injective if for each f ∈Σ, Syms(ξΣ( f ))\(⋃

g∈Σ,g̸= f Syms(ξΣ(g))
)
̸= /0, i.e., ξΣ( f ) includes a unique function symbol which is not introduced by

any other symbol g in Σ.

Note that a syntactically injective tree homomorphism is ε-free.

Proposition 3.3 A syntactically injective tree homomorphism is injective.

Finally, we formulate our nesting-preserving transformation by means of tree homomorphisms. Let
T be the transformation in [7] of a SIMP program into an LCTRS, where for each statement with label
ρ in the definition of a function f , a fresh function symbol is introduced, which is denoted by fρ . Such
a function symbol can be considered a location just before execution the corresponding statement. We
represent the nesting of statements at a statement ρ by a list of labels which is denoted by Nesting(ρ):
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If ρ is not a substatement of any other statement, then Nesting(ρ) = ε; If ρ is a direct substatement of
ρ ′,4 then Nesting(ρ) =Nesting(ρ ′)@[ρ ′].

Example 3.4 For Ploop in Program 1, Nesting(2) = Nesting(3) = Nesting(4) = Nesting(16) = ε ,
Nesting(5) = Nesting(6) = Nesting(14) = [4], Nesting(7) = Nesting(8) = Nesting(12) = [4,6], and
Nesting(9) =Nesting(10) = [4,6,8].

Definition 3.5 (a nesting-preserving transformation Tnp) Let P be a SIMP program. We introduce a
fresh constant ent to the signature of T(P). We define a mapping ξΣ as follows:

• ξΣ( f ) = f (x1, . . . ,xn) for any n-ary function symbol f which is defined in P ,

• ξΣ( fρ)= fρ1(x1, . . . ,xn1 , fρ2(xn1+1, . . . ,xn2 , fρ3(. . . , fρk(xnk−1+1, . . . ,xnk , tρ) . . .))) for any n-ary func-
tion symbol fρ that is introduced by T, where

– Nesting(ρ) = [ρ1,ρ2, . . . ,ρk],
– fρ(y1, . . . ,yn) appears in T(P) as an left-hand side such that

* y1, . . . ,yn are the variables in the definition of f in P ,
* yi is declared before y j for any i, j with i < j,
* y1, . . . ,yn1 are the local variables of P , which are accessible at ρ1, and
* y1, . . . ,yn j with 1 < j < k are the local variables of P , which are accessible at ρ j,

and
– if ρ has a substatement (i.e., a conditional or loop statement), then tρ = fρ(xnk+1, . . . ,xn,ent),

and otherwise, tρ = fρ(xnk+1, . . . ,xn).

• ξΣ(return) = return(x1), and

• ξΣ(g) = g(x1, . . . ,xn) for any n-ary theory symbol g.

Let ξP be the tree homomorphism determined by ξΣ above. We define a transformation Tnp of P into an
LCTRS as follows:

Tnp(P) = {ξP(ℓ)→ ξP(r) [φ ] | ℓ→ r [φ ] ∈ T(P)}

By definition, it is clear that ξP in Definition 3.5 is ε-free, linear, complete, and syntactically injec-
tive: for any n-ary function symbol h, ξΣ(h) is a linear non-variable term, Var(ξΣ(h)) = Xn, and
h ∈ Syms(ξΣ(h)) \ (

∨
h′∈Σ,h′ ̸=hSyms(ξΣ(h′)))—ξΣ(h) contains a function symbol that does not appear

in
∨

h′∈Σ,h′ ̸=hSyms(ξΣ(h′)).

Example 3.6 Consider the SIMP program Ploop and the LCTRS Rloop in Program 1 and Figure 1,
respectively, again. The mapping ξΣ in Definition 3.5 is defined for Rloop as follows:

• ξΣ(loop) = loop(x1),

• ξΣ(loop2) = loop2(x1),

• ξΣ(loop3) = loop3(x1,x2),

• ξΣ(loop4) = loop4(x1,x2,x3,ent),

• ξΣ(loop5) = loop4(x1,x2,x3, loop5),

• ξΣ(loop6) = loop4(x1,x2,x3, loop6(x4,ent)),

4There is no other statement ρ ′′ such that ρ is a substatement of ρ ′′ and ρ ′′ is a substatement of ρ ′.
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• ξΣ(loop7) = loop4(x1,x2,x3, loop6(x4, loop7)),

• ξΣ(loop8) = loop4(x1,x2,x3, loop6(x4, loop8(x5,ent))),

• ξΣ(loop9) = loop4(x1,x2,x3, loop6(x4, loop8(x5, loop9)),

• ξΣ(loop10) = loop4(x1,x2,x3, loop6(x4, loop8(x5, loop10)),

• ξΣ(loop12) = loop4(x1,x2,x3, loop6(x4, loop12)),

• ξΣ(loop14) = loop4(x1,x2,x3, loop14),

• ξΣ(loop16) = loop16(x1,x2,x3), and

• ξΣ(return) = return(x1).

Let ξPloop be the tree homomorphism determined by ξΣ above. Then, ξPloop(Rloop) is equivalent to the
LCTRS in Figure 3. The tree homomorphism is also applicable to the simplified LCTRS R′

loop:

ξPloop(R′
loop) =

loop(n)→ loop4(n,0,0,ent)
loop4(n,ret, i,ent)→ loop4(n,ret, i, loop6(0,ent)) [ i < n ]
loop4(n,ret, i,ent)→ return(ret) [¬(i < n) ]

loop4(n,ret, i, loop6( j,ent))→ loop4(n,ret, i, loop6( j, loop8(0,ent))) [ j < i ]
loop4(n,ret, i, loop6( j,ent))→ loop4(n,ret, i+1,ent) [ ¬( j < i) ]

loop4(n,ret, i, loop6( j, loop8(k,ent)))→ loop4(n,ret +1, i, loop6( j, loop8(k+1,ent))) [ k < j ]
loop4(n,ret, i, loop6( j, loop8(k,ent)))→ loop4(n,ret, i, loop6( j+1,ent)) [¬(k < j) ]


Note that the LCTRS in Figure 3 can be simplified to ξPloop(R′

loop) as well as the simplification of Rloop
to R′

loop.

4 Reduction Preservation by Tree Homomorphisms

In this section, we show that a syntactically injective linear tree homomorphism is sound and complete
for the reduction of an LCTRS R (cf. [14, Section 6.1]).

Let Σ and Σ′ be signatures that have the same theory signature, i.e., Σ = Σterm ∪Σtheory, Σ′ = Σ′
term ∪

Σtheory, and Σterm ∩Σtheory = Σ′
term ∩Σtheory. Let R be an LCTRS over Σ, and ξ a syntactically injective

linear tree homomorphism determined by a mapping ξΣ : Σ → T (Σ′,V) such that

• ξΣ( f ) ∈ T (Σ′ \Σtheory,Xn) for any n-ary function symbol f ∈ Σterm \Σtheory, and

• ξΣ(g) = g(x1, . . . ,xn) for any n-ary theory symbol g ∈ Σtheory.

Note that ξΣ(t) = t for any theory term t ∈ T (Σtheory,V). Let γ be a substitution over Σ. We denote the
substitutions {x 7→ ξ (xγ) | x ∈ Dom(γ)} and {x 7→ ξ−1(xγ) | x ∈ Dom(γ)} by γξ and γξ−1 , respectively.
By definition, it is clear that for every rewrite rule ℓ→ r [φ ] over Σ, ξ (ℓ)→ ξ (r) [φ ] is a constrained
rewrite rule over Σ′. We denote the LCTRS {ξ (ℓ)→ ξ (r) [φ ] | ℓ→ r [φ ] ∈ R} by ξ (R). We further
assume that

• ξΣ( f ) is basic w.r.t. ξ (R) for any defined symbol f of R, and

• ξΣ( f ) is a constructor term of ξ (R) for any constructor f of R.

The linearity and injectivity of ξ distributes the application of ξ and ξ−1 to subterms and substitu-
tions, and implies soundness and completeness for →R.
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Lemma 4.1 Let s, t be terms in T (Σ,V), p a position of s, and γ a substitution. Then, ξ (s[tγ]p) =
(ξ (s))[(ξ (t))γξ ]p′ for some position p′ of ξ (s).

Lemma 4.2 Let s, t be terms in T (Σ,V), s′ a term in T (Σ′,V), p′ a position of s′, and γ ′ a substitution
over Σ′. If ξ (s) = s′[(ξ (t))γ ′]p′ , then s = (ξ−1(s′))[tγ ′

ξ−1 ]p for some position p of s.

Theorem 4.3 (soundness and completeness of ξ for →R) For any n ≥ 0 and any term s ∈ T (Σ,V),
both of the following hold:

• For any term t ∈ T (Σ,V), if s →n
R t, then ξ (s)→n

ξ (R) ξ (t), and

• for any term t ′ ∈ T (Σ′,V), if ξ (s)→n
ξ (R) t ′, then ξ−1(t ′) is defined and s →n

R ξ−1(t ′).

5 Conclusion

In this paper, we proposed a nesting-preserving transformation of a SIMP program P into an LCTRS by
proposing a construction of a tree homomorphism ξP which is used as a post-process of the transforma-
tion T in previous work. To be more precise, the transformation Tnp is the composition of T and ξP . The
tree homomorphism ξP is ε-free, linear, complete, and syntactically injective, and hence injective. The
inverse of ξP can be considered a flattening, and the LCTRS obtained from P by Tnp can be transformed
back into the LCTRS T(P). The approach in this paper can be extended to other kinds of LCTRSs, e.g.,
LCTRSs with bit-vector arithmetic [9, 12].

The language SIMP and its extension have no statement of jumps such as goto, continue, and
break, but the transformations T and Tnp can be extended to such jumps. The nest-preserving one Tnp

would be more appropriate for the extension to jumps than T because all the local variables in a block are
arguments of the nested symbol for the block and thus, we can easily drop the local variables in exiting
the block by means of a jump.

The aim of the nesting-preserving transformation is to help analyses of the transformed LCTRSs.
However, we have not measured the usefulness of the preservation of nesting in any analysis. As our
future work, we will evaluate the nesting-preserving transformation by means of experiments of e.g.,
proving termination of LCTRSs with bit-vector arithmetic.
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