
Submitted to:
WPTE 2023

© Hagens, Kop
This work is licensed under the
Creative Commons Attribution License.

Matrix invariants for program equivalence in LCTRSs

Kasper Hagens
RU Nijmegen, Netherlands

kasper.hagens2@ru.nl

Cynthia Kop
RU Nijmegen, Netherlands

c.kop@cs.ru.nl

When transforming a program into a more efficient version (for example by translating recursive
functions into iterative ones), it is important that the input-output-behavior remains the same. One
approach to assure this uses Logically Constrained Term Rewriting Systems (LCTRSs). Two versions
of a program are translated into LCTRSs and compared in a proof system (Rewriting Induction).
Proving their equivalence in this system often requires the introduction of a lemma. In this paper we
present a new technique for generating invariants, using matrix calculations, and show how it can be
combined with an existing method by Fuhs, Kop and Nishida to produce a lemma.

1 Introduction

Given two algorithms, can we provide a reasoning that ensures they produce the same output for every
possible input? This question is known as program equivalence. It is a challenging problem that naturally
arises in software development. For example, it is common to apply transformations on programming code,
e.g. for optimization purposes or to refactor in preparation for later updates [1]. In order to guarantee
preservation of reliability and functionality, such transformations are required to retain equivalence.

In principle, with human reasoning, one could manually show that two programs are equivalent. For
practical usage, however, this is not convenient: real programs are often so big that this would be a too
time-consuming task which is, moreover, very prone to mistakes. Therefore, we would like to automate
the process as much as possible. Unfortunately, program equivalence in general is undecidable. Hence,
the best we can hope for is developing a large collection of methods that can be used in specific cases.
Some of them can be found in the field of formal verification, semantics, and logic [2].

The approach we will follow in this paper is based on term rewriting: a mathematical discipline that
studies the step-by-step transformation of objects, called terms, by the application of rewrite rules. A term
can, for example, represent the state of an algorithm on some particular instance during its execution. The
application of a rewrite rule can then be thought of as a calculation step in the algorithm.

Programs can be automatically converted into Logically Constrained Term Rewriting Systems
(LCTRSs) [3, 4], after which equivalence is shown using a proof system called Rewriting induction
(RI). It is often possible to automatically find a proof, using various strategies and lemma generation
techniques. Some lemma generation methods for LCTRSs were introduced in [3], most importantly
Initialization Generalization (InGen), which works fine in many cases but also has its limitations.

This paper proposes a new method for generating invariants. We show how these invariants can in
turn be combined with SMT and InGen in cases where InGen on itself is unable to produce a lemma.

Related Work Related work potentially includes everything that discusses the generation of in-
variants on programs. One existing method uses widening operators [5, 6]. Another method is based on
o-minimal invariants [7] on discrete dynamical systems. Perhaps the most related to our idea of matrix
invariants is a method based on linear algebra [8, 9]. We still need to investigate how exactly these
methods relate to our ideas and whether we can use them in our setting.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Lemma Generation Methods for RI on LCTRSs

2 Preliminaries

We assume familiarity with basic notions of many-sorted term rewriting, such as function symbols,
variables, terms, substitutions and contexts. In this section, we briefly introduce LCTRSs and a simplified
version of Rewriting Induction (RI) as defined for LCTRSs in [10, 3].

Logically Constrained Term Rewriting Assume a set of sorts (most commonly {bool, int, unit}),
a set Var of sorted variables (notation x : ι), and a set Σ of function symbols, each equipped with a sort
declaration [ι1 ×·· ·× ιk]⇒ κ , indicating that f takes k arguments of sorts ι1, . . . , ιk, and f(s1, . . . ,sk) has
type κ . Let T erms(Σ,Var) be the set of well-sorted terms built from Σ and Var. We typically denote
x,y,z,xi,yi,zi for variables and f,g,u,v or more suggestive notation for function symbols.

We assume Σ = Σterms ∪Σtheory where Σtheory contains symbols such as +,>,∧,3,−50 that have a
meaning in some underlying theory, whereas Σterms contains symbols which behavior we want to define
by the rewriting system. Each sort ι occurring in Σtheory, called theory sort, is interpreted as set Iι . For
each f : [ι1 ×·· ·× ιk]⇒ κ in Σtheory there is an interpretation function J (f) : Iι1 ×·· ·×Iιk → Iκ . For
example, we usually define Iint = Z and J (+) : Z×Z→ Z is usually defined as addition on Z. Elements
of T erms(Σtheory,Var) are called logical terms. For every theory sort ι , define Valι := {f ∈ Σtheory | f : ι}
to be the set of values of sort ι . We require that J (f) is a bijection between Valι and Iι , for all f : ι . Let
Val = ∪ιValι be the set of all values. Symbols in Σtheory \Val are called calculation symbols.

For ground logical terms, define J f (s1, . . . ,sn)K = J (f)(Js1K, . . . ,JsnK) and JsK = J (s) if s ∈ Val. A
constraint is a logical term c : bool, where Ibool = B= {⊤,⊥}. A constraint c is valid if JcγK =⊤ for
all substitutions γ that map all the variables in c to values. A substitution γ respects a constraint ϕ if all
variables in ϕ are mapped to values and JϕγK =⊤. We typically assume Σtheory ⊇ Σcore

theory, where Σcore
theory

contains true, false : bool,∨,∧ : [bool× bool] ⇒ bool,¬ : [bool] ⇒ bool with Ibool = B, and where J
interprets all function symbols as expected. We use infix notation for the binary operators in Σtheory.

Example 1 Consider Σterms = {max : [int× int]⇒ int, return : [int]⇒ bool} and Σtheory = Σcore
theory ∪{n :

int | n ∈ Z}. Let Ibool = B, Iint = Z and J the function that interprets all symbols in Σtheory as expected.
Then false : bool, true : bool and all n : int are values. Examples of logical terms include t1 = true,
t2 = ¬(x∧ y), t3 = x∨¬x, t4 = true∨ false. The interpretation of t4 is Jt4K = (⊤ “or” ⊥) =⊤. All ti are
constraints, but only t1, t3 and t4 are valid. An example of a non logical term is max(x,0).

A rewriting rule is a triple ℓ → r [ϕ], with ℓ and r terms and ϕ a constraint. We write ℓ→ r if ϕ = true.
The root of ℓ must be in Σterms\Σtheory and ℓ and r must have the same sort. Note that it is allowed to have
variables in r, not occurring in ℓ. The set of logic variables of a rule ℓ → r [ϕ], notation LVar(ℓ → r [ϕ]),
is given by Var(ϕ)∪ (Var(r)\Var(ℓ)). Define Rcalc = { f (⃗x) → y [f (⃗x) = y] | f ∈ Σtheory\Val}.

For a set of rules R, the rewrite relation →R is defined by C[ℓγ] →R C[rγ] if ℓ → r [ϕ]∈R∪Rcalc,
JϕγK=⊤ and γ(x)∈Val for all x∈ LVar(ℓ → r [ϕ]). That is, to apply a rule, the logical variables must be
instantiated with values, and the constraint must be satisfied. For any f (l1, . . . , ln) → r [ϕ]∈R we call f a
defined symbol. D is the set of defined symbols; symbols in Val∪(Σterms\D) are constructors. A logically
constrained term rewriting system (LCTRS) is the abstract rewriting system (T erms(Σ,Var),→R).

Constrained Terms To handle program equivalence, we need to rewrite constrained terms. Es-
sentially, a constrained term s [ϕ] represents the set of terms sγ such that ϕγ is valid. Two constrained
terms are equivalent if they represent the same set; e.g., f(x) [x ≥ 0] is equivalent to f(z) [2−3 < z]. We
write s [ϕ] →R t [ψ] if each instance of s that satisfies ϕ reduces in one step to an instance of t that
satisfies ψ , and all such instances of t can be obtained in this way. Formally, for a constrained term s [ϕ]

Hagens, Kop 3

and rule ρ = ℓ → r [ψ], define s [ϕ] →ρ t [ϕ] if for some context C and some substitution γ we have
s =C[ℓγ], t =C[rγ], ϕ ⇒ ψγ is valid and for all x ∈ LVar(ρ) we have γ(x) ∈ Val∪Var(ϕ). The rewrite
relation on constrained terms is modulo term equivalence. For example, f(a,a+1) [a > 0] is rewritten
into f(a,b) [a > 0∧b = a+1] because f(a,a+1) [a > 0] is equivalent to f(a,a+1) [a > 0∧b = a+1],
and we can then use the calculation rule x+ y → z [x+ y = z] with substitution [x := a,y := 1,z := b].

Inductive Theorems An equation is a triple s ≈ t [ϕ] with s, t terms of the same type and ϕ a
constraint. A substitution γ respects s ≈ t [ϕ] if γ respects ϕ and Var(s)∪Var(t)⊆ Dom(γ). An equation
s ≈ t [ϕ] is an inductive theorem if sγ ↔∗

R tγ for all substitutions γ that respect this equation and which
map all variables in s, t to ground constructor terms. Intuitively, f (⃗x)≈ g(⃗x) [ϕ] is an inductive theorem
if f and g agree on all x⃗ for which ϕ (⃗x) holds. To prove that an equation is an inductive theorem we can
use rewriting induction; a deduction system for manipulating proof states. A proof state is a pair (E ,H)
where E is a set of equations and H is a set of induction hypotheses: rewriting rules which have been
derived during the rewriting induction. A proof state (E1,H1) might be transformed into another proof
state (E2,H2), notation (E1,H1) ⊢ri (E2,H2), by using one of the deduction rules which we explain in
Section 3. The transitive, reflexive closure of ⊢ri is denoted by ⊢∗

ri.
Theorem 1 [3] If (E , /0) ⊢∗

ri (/0,H) for some set H, then all equations in E are inductive theorems.

Validness of this theorem is, however, only guaranteed if we satisfy the following requirements: (1)
Σtheory ⊇ Σcore

theory; (2) R is terminating, i.e. there are no infinite reductions s1 →R s2 →R s3 →R . . . ; (3) R
is quasi-reductive, i.e. every ground term is a constructor term or reduces; and (4) every sort in Σ has at
least one ground term.

3 Program Equivalence by LCTRSs

Let us demonstrate how LCTRSs can be used for program equivalence. Figure 1 shows three implementa-
tions of sum(x) = ∑

x
i=1 i. We use rewriting induction to prove their equivalence.

int sum1(int x){

int z = 0;

for (int i = 0;

i <= x; i++)

z += i;

return z;

}

(a)

int sum2(int x){

if (x > 0)

return

(x + sum2(x-1));

else

return 0;

}

(b)

int sum3(int x){

int z = 0;

while (x>0)

z += x;

x = x-1;

return z;

}

(c)

Figure 1: Three equivalent implementations of sum(x) = ∑
x
i=1 i.

The code in Figure 1a is represented as an LCTRS with Σtheory = Σcore
theory∪{+,≥,<}∪{n | n ∈ Z} and

Σterms = {sum1, return : [int]⇒ unit, u : [int× int× int]⇒ unit} and rewrite rules Rsum1, consisting of

(R1) sum1(x) → u(x,1,0) (R3) u(x, i,z) → return(z) [i > x]
(R2) u(x, i,z) → u(x, i+1,z+ i) [i ≤ x]

Similarly, we can represent the function in Figure 1b by an LCTRS Rsum2, consisting of rules

(R4) sum2(x) → add(x,sum2(x−1)) [x > 0] (R6) add(x, return(y)) → return(x+ y)
(R5) sum2(x) → return(0) [x ≤ 0]

4 Lemma Generation Methods for RI on LCTRSs

Rewriting Induction The equivalence of sum1 and sum2 is shown by proving that sum1(x) ≈
sum2(x) is an inductive theorem. By Theorem 1, it suffices to show that there is deduction (E , /0) ⊢∗

ri

(/0,H), for some sets H and E with {sum1(x)≈ sum2(x)} ⊆ E . We demonstrate how to derive this by
simultaneously explaining a simplified version of rewriting induction.

Let R =Rsum1 ∪Rsum2 and start the rewriting induction with proof state (E ,H) := ({sum1(x) ≈
sum2(x)}, /0). For readability, we will write a deduction step by E1 ⊢ri E2, omitting the H component.

SIMPLIFICATION. We may apply any rule from R∪Rcalc∪H to a subterm. For rewriting purposes, the
equation is viewed as a single constrained term with a new function symbol ≈. SIMPLIFICATION on
sum1(x) with (R1) gives

{
sum1(x)≈ sum2(x)

}
⊢ri { u(x,1,0)≈ sum2(x) }.

EXPANSION. We may do a case analysis on a subterm on one side of an equation s ≈ t [ϕ]. For every rule
l → r [ψ] ∈ R this will try to find a substitution γ that matches l with the chosen subterm. For every
successful case, a new equation is added where constraint ψγ is added to the constraint of the equation
and SIMPLIFICATION is applied with the selected rule. Furthermore, if s is the subject of an expansion
and R∪Rcalc∪H∪{s → t [ϕ]} is terminating, then the rewrite rule s → t [ϕ] is added to H. If t is the
subject of expansion, then t → s [ϕ] is added instead (if R∪Rcalc∪H∪{t → s [ϕ]} is terminating).

EXPANSION on sum2(x) causes (H1) sum2(x) → u(x,1,0) to be added to H.{
u(x,1,0)≈ sum2(x)

}
⊢ri

{
u(x,1,0)≈ add(x,sum2(x−1)) [x > 0],
u(x,1,0)≈ return(0) [x ≤ 0]

}
Now (R2), (R3) and Rcalc can be used to apply SIMPLIFICATION on the equations.{
u(x,1,0)≈ add(x,sum2(x−1)) [x > 0],
u(x,1,0)≈ return(0) [x ≤ 0]

}
⊢∗
ri

{
u(x,2,1)≈ add(x,sum2(x−1)) [x > 0],
return(0)≈ return(0) [x ≤ 0]

}
In addition, we can apply (H1) to rewrite sum2(x−1).{
u(x,2,1)≈ add(x,sum2(x−1)) [x > 0],
return(0)≈ return(0) [x ≤ 0]

}
⊢∗
ri

{
u(x,2,1)≈ add(x,u(x−1,1,0)) [x > 0],
return(0)≈ return(0) [x ≤ 0]

}

DELETION. An equation s ≈ t [ϕ] may be deleted if s = t or ϕ is unsatisfiable (that is, JϕγK =⊥ for any
γ that maps the variables in ϕ to values). Following this rule, we may remove the second equation from
the proof state. The remaining equation contains the subterm u(x−1,1,0). To support the application
of rewrite rules, it is needed to replace a calculation (e.g. x− 1) by a fresh variable (e.g. x′), where
we update the constraint with a corresponding equality (e.g. x′ = x− 1). This can be done using the
SIMPLIFICATION rule. In this case, replacing x−1 by x′ yields:

{u(x,2,1)≈ add(x,u(x−1,1,0)) [x > 0]} ⊢ri {u(x,2,1)≈ add(x,u(x′,1,0)) [x > 0∧ x′ = x−1]}

At this point we do another EXPANSION step, now on the left side of the equation. This causes
(H2) u(x,2,1) → add(x,u(x′,1,0)) [x > 0∧ x′ = x−1] to be added to H, and yields the following proof
state, where the constraints are simplified as much as possible.

⊢ri

{
u(x,2+1,1+2)≈ add(x,u(x′,1,0)) [x > 1∧ x′ = x−1],
return(1)≈ add(x,u(x′,1,0)) [x = 1∧ x′ = x−1]

}

Hagens, Kop 5

We apply SIMPLIFICATION in the rhs of the second equation with (R3), (R6) and Rcalc (for the
moment, we do not denote the first equation, but it is of course still there).

⊢ri{return(1)≈ add(x,u(x1,1,0)) [x = 1∧ x′ = x−1]}
⊢ri{return(1)≈ add(x, return(0)) [x = 1∧ x′ = x−1]}
⊢ri{return(1)≈ return(x+0) [x = 1]} ⊢ri {return(1)≈ return(x) [x = 1]}

In this last equation, we cannot apply DELETION, since the left and right side are not syntactically
equal. Their equivalence is, however, implied via the constraint.

EQ-DELETION. Applying EQ-DELETION to an equation C[s1, . . . ,sn]≈C[t1, . . . , tn] [ϕ], where all si, ti are
logical terms adds the negation ¬(

∧n
i=1 si = ti) to the constraint ϕ . Intuitively, this rule allows us to delete

equations whose left and right side are not syntactically equal, but their equivalence is implied by the
constraint. Applying this rule creates an unsatisfiable constraint that is then subject to the DELETION rule.

Applying EQ-DELETION to the equation above yields return(1)≈ return(x) [x = 1∧¬(x+0 = 1)] to
which DELETION can be applied. After some few more simplifications, we obtain an equation u(x,3,3)≈
add(x,u(x′,2,1)) [x > 1∧ x′ = x−1]

Automation. The rewriting induction process can be automated using a strategy: a priority selection
on the deduction rules. The strategy used in [3] tries to apply deduction rules in the following order:
EQ-DELETION, DELETION, SIMPLIFICATION, EXPANSION.

Divergence As often happens in practice, and also for sum1(x) ≈ sum2(x), we eventually keep
expanding but we cannot apply any induction rule to the lhs. After some more steps we arrive at
E = { u(x,5,10)≈ add(x,u(x′,4,6)) [x > 3∧ x′ = x−1] }

H=


sum2(x) → u(x,1,0),
u(x,2,1) → add(x,u(x′,1,0)) [x > 0∧ x′ = x−1],
u(x,3,3) → add(x,u(x′,2,1)) [x > 1∧ x′ = x−1],
u(x,4,6) → add(x,u(x′,3,3)) [x > 2∧ x′ = x−1]


It is clear that no induction hypothesis will ever be applicable to the left-hand side of the ongoing equation.
What we encounter here is called divergence.

4 Generalization

As is often the case in mathematics, it may happen that proving a more general statement is easier than
proving a particular instance of that statement. This can also be the case in rewriting induction, in the
sense that an equation with a diverging proof may be a special case of a more general equation with a
non-diverging proof. In sum1(x)≈ sum2(x), the recurring equation in E is always an instance of

(L) : u(x, i1,z1)≈ add(x,u(x′, i0,z0))
[i1 = i0 +1∧ z1 = z0 + i0 ∧ x′ = x−1∧ x ≥ i0 ∧ i0 = i+1∧ z0 = z+ i∧ x > 0]

It happens that (L) is an inductive theorem, provable using RI. The proof adds (L) to H as a rewriting rule,
which in turn can be applied to solve the divergence. Hence, ({sum1(x)≈ sum2(x)}, {(L)}) ⊢∗

ri (/0,H)
for some H, proving the equivalence. In this setting, we call (L) a lemma. Equalities/inequalities such as
i1 = i0 +1 and x > 0 are called invariants because they hold for every divergence rule in H. The question
remains how such a lemma can be found automatically. Much work has been done in this area (see e.g.
[11, 12, 13, 14, 15, 16, 3]). Below we recall one of these methods called initialization generalization. [3]

6 Lemma Generation Methods for RI on LCTRSs

Initialization generalization [3] Initialization generalization (InGen) adapts an LCTRS by assign-
ing a fresh (red colored) variables to every value initialization. Using this altered (but equivalent) LCTRS,
we start the RI and somewhere in this process the value assignments are removed. In the meantime, we
obtained a bunch of equalities/inequalities involving these fresh variables that may give us a lemma.

Example 2 The InGen procedure will replace (R1) sum1(x)→ u(x,1,0) by (R1′) sum1(x)→ u(x, i,z)
[i = 1∧ z = 0]. Using (R1′) we start the rewriting induction on sum1(x) ≈ sum2(x) until we need to
perform the second divergence-EXPANSION. At this point we have the following equation in E :

u(x, i1,z1)≈ add(x,u(x′, i0,z0))
[i1 = i0 +1∧ z1 = z0 + i0 ∧ x′ = x−1∧ x ≥ i0 ∧ i0 = i+1∧ z0 = z+ i∧ x > 0∧ i = 1∧ z = 0]

We drop the value initializations, followed by EXPANSION on the left. This adds the following rule to H:
u(x, i1,z1)→ add(x,u(x′, i0,z0))

[i1 = i0 +1∧ z1 = z0 + i0 ∧ x′ = x−1∧ x ≥ i0 ∧ i0 = i+1∧ z0 = z+ i∧ x > 0]
This induction rule does apply to an ongoing proof state, by which we can finish the proof. Conclude that

u(x, i1,z1)≈ add(x,u(x′, i0,z0))
[i1 = i0 +1∧ z1 = z0 + i0 ∧ x′ = x−1∧ x ≥ i0 ∧ i0 = i+1∧ z0 = z+ i∧ x > 0]

is a valid lemma, which allows us to prove that sum1(x)≈ sum2(x) is an inductive theorem.

5 Generalization with matrix invariants

InGen is a good starting point when looking for a lemma generation method, but it also has some flaws.
First, not all equalities/inequalities produced by InGen are always invariants. In such cases we will not
obtain a valid lemma. This for example happens when trying to prove the equivalence of Figure 1b
and Figure 1c. The second, more serious, problem is that InGen is not always able to produce enough
invariants. We provide a method for generating inequality invariants, by using matrix calculations. While
its usefulness is limited when used on its own, we show various strategies on combining it with SMT
(Section 5.2) to obtain a method that can handle a variety of systems that were previously out of reach.

5.1 Matrix invariants

Example 3 Consider the LCTRSs for the programs given in Figure 1b and Figure 1c:
(R4) sum2(x)→ return(0) [x ≤ 0] (R7) sum3(x)→ v(x,0)
(R5) sum2(x)→ add(x,sum2(x−1)) [x > 0] (R8) v(x,z)→ v(x−1,z+ x) [x > 0]
(R6) add(x, return(y))→ return(x+ y) (R9) v(x,z)→ return(z) [x ≤ 0]

Aiming to show that sum2(x)≈ sum3(x) is an inductive theorem, we obtain the following divergence:

H=


sum2(x)→ v(x,0),
v(y0,z′0)→ add(x,v(y0,0)) [y0 = x−1∧ z′0 = x∧ x > 0],
v(y1,z′1)→ add(x,v(y1,z1)) [y1 = x−2∧ z′1 = 2x−1∧ z1 = x−1∧ x > 1],
v(y2,z′2)→ add(x,v(y2,z2)) [y2 = x−3∧ z′2 = 3x−3∧ z2 = 2x−3∧ x > 2],
v(y3,z′3)→ add(x,v(y3,z3)) [y3 = x−4∧ z′3 = 4x−6∧ z3 = 3x−6∧ x > 3]


Using InGen, we obtain a rule (R7′) sum3(x)→ v(x,z) [z = 0]. Dropping initialization z = 0 before the
second expansion yields an equation v(y,z′) ≈ add(x,v(y,z)) [z′ = z+ x∧ y = x− 1∧ x > 0]. This is,
however, not a valid lemma because y = x−1 is not an invariant. If we remove this non-invariant we are
very close to a valid lemma. The resulting equation is not provable by RI because we are not able to do the
first EXPANSION step: this would add the non-terminating rule v(y,z′)→ add(x,v(y,z)) [z′ = z+x∧x > 0]
to H, which is not allowed. The problem can be solved by adding an invariant z ≥ 0 to the constraint,

Hagens, Kop 7

which is satisfied by all equations in the divergence. The resulting lemma can be easily proved with
rewriting induction, which in turn allows us to prove sum2(x)≈ sum3(x). Instead of randomly dropping
constraints, and adding inequalities to protect termination, we present a systematic method that is able to
detect non-invariants automatically, as well is able to generate invariants.

Simple divergence In Example 3, the rules in H (except for the first) obey a simple divergence
pattern: every instance of the divergence has the same shape. Each instance contains the divergence
variables yi, z′i and zi, all dependent on x, which we will call an initialization variable. First, we need to
distinguish between those two types of variables.

Definition 1 Let ⊒ be the quasi-order on Σterms generated by f ⊒ g if there is a rule f (ℓ1, . . . , ℓn) →
r [ϕ] ∈ R with g occurring in r. Define a corresponding strict order = = (⊒ \ ⊑) and the set of
initializations T ermsinit, where ℓ= (ℓ1, . . . , ℓn):

T ermsinit =
{

ri ∈ T erms(Σtheory,Var) | f (ℓ)→C[g(r1, . . . ,rm)] [ϕ] ∈R, f = g, g ∈ D
}

Define Vinit = Var(T ermsinit) to be the set of initialization variables.

Example 4 In Example 3: ⊒ is the transitive reflexive closure of {sum2⊒ add, add⊒ return, sum3⊒ v,
v ⊒ return}. Hence, sum2 = add = return and sum3 = v = return. There is one initialization x in
sum2(x)→ add(x,sum2(x−1)) [x > 0], and there are initializations x and 0 in sum3(x)→ v (x,0). So
T ermsinit = {x,0} and Vinit = {x}.

Definition 2 A simple divergence pattern in n parameters is a sequence (ρi)i∈N of rewrite rules together
with a substitution χ , called the diverge substitution, variables w1, . . . ,wn, called the divergence variables,
and terms ℓ,r, called the divergence shape, such that:

1. Vdiv ⊆ Var(ℓ)∪Var(r), where Vdiv = {w1, . . . ,wn} is the set of divergence variables.

2. Every ρi has a shape ℓ[w1 := vi,1, . . . ,wn := vi,n]→ r[w1 := vi,1, . . . ,wn := vi,n] [ϕi].

3. For every i and 1 ≤ j ≤ n: ϕi contains an equality vi, j = ei, j for some ei, j ∈ T erms(Σtheory,Vinit).
We call e⃗i := (ei,1, . . . ,ei,n) the divergence vector for i.

4. For every i and 1 ≤ j ≤ n: ei+1, j = χ(w j)[w1 := ei,1, . . . ,wn := ei,n].

Define divergence space Div = {⃗ei | i ∈ N}= {χ i(w⃗)[w⃗ := e⃗0] | i ∈ N}.

Example 5 In Example 3, every rule is of the shape v(yi,z′i) → add(x,v(yi,zi)), which satisfies the
divergence pattern with divergence shape (v(y,z′), add(x,v(y,z))) and divergence variables Vdiv = {y,z,z′}.
The divergence substitution is χ = [y := y−1, z′ := z′+ y, z := z+ y] and we have Vinit = {x}. Hence
v⃗0 = (y0,z′0,z0) and e⃗0 = (x−1,x,0). We can now successively apply χ to compute divergence space

Div = {(x−1,x,0)︸ ︷︷ ︸
e⃗0

, (x−2,2x−1,x−1)︸ ︷︷ ︸
χ(w⃗)[w⃗:=⃗e0]

, (x−3,3x−3,2x−3)︸ ︷︷ ︸
χ2(w⃗)[w⃗:=⃗e0]

, (x−4,4x−6,3x−6)︸ ︷︷ ︸
χ3(w⃗)[w⃗:=⃗e0]

, . . .}

Note that Div ⊆ Z[x]3. In general, for TRSs over the theory of integers, Div ⊆ Z[Vinit]
n where n is the

number of parameters of the divergence pattern.

Definition 3 Let n = length(⃗e0), so Div ⊆ Z[Vinit]
n. An invariant is a non-zero function f : Z[Vinit]

n →
Z[Vinit] such that f (⃗ei) = 0, for all e⃗i ∈ Div.

Let us consider an affine invariant of the shape f = a0 +∑v∈Vdiv
av · v with coefficients a0,av ∈ Z[Vinit].

8 Lemma Generation Methods for RI on LCTRSs

Example 6 In Example 5, an affine invariant is a polynomial f (y,z′,z) = a0 + ay · y+ az′ · z′+ az · z ∈
Z[x][y,z′,z], for some a0,ay,az′ ,az ∈ Z[x], such that f (⃗e0) = f (⃗e1) = f (⃗e2) = . . . = 0. Considering the
first n+1 = 4 (the number of unknown coefficients) requirements yields a system of linear equations:

1 x−1 x 0
1 x−2 2x−1 x−1
1 x−3 3x−3 2x−3
1 x−4 4x−6 3x−6


︸ ︷︷ ︸

L


a0
ay

az′

az


︸ ︷︷ ︸

a⃗

=


0
0
0
0



Definition 4 Let n = length(⃗e0). The affine invariant matrix is defined by L =


1 e⃗0
1 e⃗1
...

...
1 e⃗n

.

Matrix invariants Observe that an affine invariant corresponds to a vector a⃗ ∈ Z[Vinit] such that
La⃗ = 0⃗. In terminology of linear algebra, the collection of all such vectors is known as the kernel of L,
notation ker(L). So for any affine invariant a⃗ we necessarily have that a⃗ ∈ ker(L)\ {⃗0}. Using Gaussian
elimination (or in practice more optimized methods), computer algebra systems can compute a basis for
the kernel of a symbolic matrix. Each basis vector gives us possibly an affine invariant: even though
ker(L)\{⃗0} contains all affine invariants, the converse “every element in ker(L)\{⃗0} is a affine invariant”,
may not be true. The reason for this is that, in order to be able to compute the matrix L, we restricted the
full requirement “ f (⃗ei) = 0, for all i” to a finite initial part of length n+1.

Corollary 1 Any affine invariant is contained in ker(L)\ {⃗0}.

Remark. Some complications may arise due to the fact that we work with modules instead of vector
spaces. E.g. in Example 6 we consider Z[x]4 as a Z[x]-module. Although this is a free module (meaning
that it has a basis) this unfortunately does not imply that every submodule is also free.

Example 7 In Example 6 we compute ker(L) = span{(x,0,−1,1)}, corresponding to the invariant
f (y,z′,z) = x ·1+0 · y+(−1) · z′+1 · z. Since f (⃗ei) = 0, for all e⃗i ∈ Div, this translates to z′ = x+ z for
all e⃗i = (yi,z′i,zi) ∈ Div. This gives us the equation v(y,z′) ≈ add(x,v(y,z)) [z′ = x+ z]. As we saw in
Example 3, this is not a lemma yet: we need some additional inequalities to guarantee termination.

Two questions remain. First, how to automatically compute the divergence substitution χ ; and second,
how to adapt the resulting lemma for termination. For the former question, we can use the following
strategy: start with the divergence shape ℓ→ r in equational form ℓ≈ r, using an empty constraint, and
expand on the side in accordance to the divergence pattern. Here, we only need to consider the case
responsible for the ongoing divergence. Then simplify the corresponding equation as far as possible, after
which we can read off the divergence substitution.

Example 8 In Example 3 we start with equation v(y,z′) ≈ add(x,v(y,z)) and expand on the left side,
where we only consider the case corresponding to rule (R8). This yields v(y−1,z′+y)≈ add(x,v(y,z)) [y>
0]. Now, by simplifying as far as possible, we obtain v(y−1,z′+ y)≈ add(x,v(y−1,z+ y)) [y > 0] and
we can read off the divergence substitution χ = [y := y−1, z′ := z′+ y, z := z+ y].

As for the second question, we will next see how to use InGen, the original divergence and an SMT
solver to generate candidate inequalities to be added to the lemma.

Hagens, Kop 9

5.2 Generating additional invariants

In practice, it happens that the conjunction of all matrix invariants “almost” yields a lemma, in the sense
that we only need some easy additional inequalities. For example, in the previous section we needed some
inequalities (such as z′ > z∧ z ≥ 0) to satisfy the termination requirement. In this section we will provide
several ideas for the generation of such invariants.

Using inequalities from InGen
Example 9 Consider again sum1(x)≈ sum2(x), but suppose we try to generate a lemma using matrix
invariants instead of InGen. The divergence pattern is given by u(x, i′,z′) → add(x,u(x′, i,z)) with
x′ = x−1, Vinit = /0 and Vdiv = {i′,z′, i,z}, where e⃗0 = (2,1,1,0) (the values for i′0,z

′
0, i0,z0 respectively)

and divergence substitution χ = [i′ := i′+1, z′ := z′+ i′, i := i+1, z := z+ y]. This yields

L =


1 2 1 1 0
1 3 3 2 1
1 4 6 3 3
1 5 10 4 6
1 6 15 5 10

. Compute ker(L) = span{(1,−1,0,1,0),(−1,1,−1,0,1)}, corresponding to

invariants 1− i′+ i = 0 and −1+ i′− z′+ z = 0, respectively. This yields u(x, i′,z′)≈ add(x,u(x′, i,z))
[i′ = i+1∧ z′+1 = z+ i′∧ x′ = x−1]. This equation is too general, and cannot be proved with RI. The
missing inequalities can be obtained from InGen: in Example 2 it was shown how InGen computes a
lemma u(x, i′0,z

′
0)≈ add(x,u(x′, i0,z0)) [i′0 = i0 +1∧ z′0 = z0 + i0 ∧ x′ = x−1∧ x ≥ i0 ∧ i0 = i+1∧ z0 =

z+ i∧ x > 0]. If we add x ≥ i0 (which becomes x ≥ i on Vdiv) to our equation, we have a provable lemma.

However, how can we know that we can safely add an inequality to the constraint?

Verification by SMT In general, clauses produced by InGen are not always invariants and therefore,
we should be careful when adding them to the constraint ϕ . We show how an SMT solver can help us to
verify that, e.g., an inequality s ≥ t is an invariant with respect to substitution χ and constraint ϕ . For this,
it needs to check that ϕ ∧ s ≥ t ∧ψEXP =⇒ χ(s)≥ χ(t) is (universally quantified) valid. Here, ψEXP is
the additional constraint obtained in the divergence leg after performing EXPANSION.

Example 10 In Example 9, the SMT solver will verify that (i′ = i+1∧ z′+1 = z+ i′∧ x′ = x−1)∧ x ≥
i∧ψEXP =⇒ x ≥ i+1, so x ≥ i is added to the constraint. Here, ψEXP := i′ ≤ x. To clarify how to obtain
this ψEXP, the part of the RI where ψEXP (colored blue) is introduced is shown below.
Lemma: u(x, i′,z′)≈ add(x,u(x′, i,z)) [i′ = i+1∧ z′+1 = z+ i′∧ x′ = x−1∧ x ≥ i]
Rewriting induction: start with the lemma-equation and perform EXPANSION on u(x, i′,z′). We obtain

E =

{
u(x, i+1,z′+ i′)≈ add(x,u(x′, i,z)) [i′ ≤ x∧ i′ = i+1∧ z′+1 = z+ i′∧ x′ = x−1∧ x ≥ i]
return(z′)≈ add(x, return(z)) [i′ > x∧ i′ = i+1∧ z′+1 = z+ i′∧ x′ = x−1∧ x ≥ i]

H= {u(x, i′,z′)→ add(x,u(x′, i,z)) [i′ = i+1∧ z′+1 = z+ i′∧ x′ = x−1∧ x ≥ i]}
The RI-proof is now easily finished: the details are left to the reader. Notice that the lemma generalizes
the divergence pattern of sum1(x)≈ sum2(x), so can indeed be used to prove this equation.

We can use the same idea to build on Example 7 in Section 5.1.

Example 11 The equation in Example 7 could not be proven because of termination. InGen contains
the clause x > 0. As this inequality does not contain any of the step-variables yi,zi or z′i, we have
χ(x) = x > 0 = χ(0), and we immediately see that z′ = x+ z∧ x > 0∧ψEXP =⇒ x > 0 is valid. Hence,
we add x > 0 to the constraint and obtain the equation v(y,z′) ≈ add(x,v(y,z)) [z′ = x + z ∧ x > 0].

10 Lemma Generation Methods for RI on LCTRSs

Unfortunately, this is not sufficient for termination: in the corresponding induction rule (that will appear
during the RI-process) the second argument to v decreases in each step, but is not bounded from below.
To have termination, we should for instance have an additional clause z ≥ 0 or z′ ≥ 0.

Using increasing/decreasing variables In Example 11 we saw that InGen cannot always provide
us enough invariants to ensure termination. We show that we can use increasing/decreasing variables
in order to generate more invariants. We propose an approach very similar to the one in Section 5.2:
for a lemma s ≈ t [ϕ] with divergence substitution χ and divergence variables Vdiv = {w1, . . . ,wn}, we
check for every j if ϕ ∧ψEXP =⇒ χ(w j) ≥ w j. If this holds, we may add w j ≥ e0, j to ϕ . Similarly, if
ϕ ∧ψEXP =⇒ χ(w j)≤ w j, we may add w j ≤ e0, j.

Example 12 To finish Example 11, note that χ(z) = z+ y (as in Example 5) and ψEXP = y > 0 (as in
Example 8). We have (z′ = x+ z∧ x > 0)∧ y > 0 =⇒ z+ y > z. Since z0 = 0 , we add z ≥ 0 to the
constraint of the lemma, yielding v(y,z′)≈ add(x,v(y,z)) [z′ = x+ z∧ x > 0∧ z ≥ 0] which can easily be
proved, and can be used to finish the equivalence proof of Example 3. Alternatively (or in addition), we
could add z′ ≥ x by the same reasoning, which also yields a provable lemma.

Remark. Rather than essentially guessing good inequalities, we can consider what is necessary for
specific termination techniques. In this idea, we simulate a proof for the lemma while ignoring the
termination requirements. Then, we consider what additional requirements are needed for our termination
method to conclude termination. This may provide a number of candidate constraints. We verify for
each of the possibilities if it is satisfied in the original divergence pattern (possibly skipping the first few
steps), and if so, test if the proof still goes through when these constraints are added to the lemma. For
example, if we want to use a simple version of the value criterion [17] to prove termination of a rule
v(y,z′)→ add(x,v(y,z)) [z′ = x+ z∧ x > 0] we need z′ ≥ 0. This property is valid in all of the diverging
equations, so we can simply add it to our lemma.

The downside of this approach is that it fundamentally breaks modularity, and ties the lemma
generation technique to specific termination methods. This is why we prefer the more general technique
of identifying an increase (or decrease) through χ and ψEXP.

Array programs Matrix invariants are not only applicable to integer programs. In Appendix A
we show it can be used to prove the equivalence between two array programs. As usual, an additional
inequality invariant is needed and we show how to gain this from a non-invariant produced by InGen.

6 Discussion and future work

We proposed a method for computing invariants on simple divergence patterns using matrix calculations. A
script in GNU Octave 1 was implemented in order to calculate invariants of a manually inserted divergence
pattern. A short demonstration is included in Appendix B. Considering existing work: using linear algebra
for generating invariants is not entirely new (e.g. [8, 9]). We might in general benefit from the work in
relational verification, which will be part of our future work.

Often, to obtain a valid lemma, additional inequality invariants are needed which cannot be generated
by our matrix method. For this problem we proposed several ideas, all of them using an SMT solver. Here,
we also might benefit from existing work, like widening operators [5, 6].

1Accessed from https://github.com/kasperhagens/polynomial-invariants on May 2023.

https://github.com/kasperhagens/polynomial-invariants

Hagens, Kop 11

Fully automatic lemma generation (for large scale testing of our ideas) requires more: the only way to
find out that some particular equation is an inductive theorem is by performing its RI-proof. This means
that automatic lemma generation unavoidably needs an implementation of RI. This RI-tool should be able
to automatically identify a divergence pattern and then calculate the required invariants.

References

[1] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems. USA: Cambridge
University Press, 2004.

[2] S. K. Lahiri, A. Murawski, O. Strichman, and M. Ulbrich, “Program equivalence (dagstuhl seminar 18151),”
in Dagstuhl Reports, vol. 8, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[3] C. Fuhs, C. Kop, and N. Nishida, “Verifying procedural programs via constrained rewriting induction,” TOCL,
vol. 18, no. 2, pp. 1–50, 2017.

[4] N. Nishida, M. Kojima, and T. Kato, “On transforming imperative programs into logically constrained term
rewrite systems via injective functions from configurations to terms,” tech. rep., EasyChair, 2022.

[5] S. Sankaranarayanan, H. Sipma, and Z. Manna, “Constraint-based linear-relations analysis,” pp. 53–68, 08
2004.

[6] R. Bagnara, P. Hill, E. Ricci, and E. Zaffanella, “Precise widening operators for convex polyhedra,” Sci.
Comput. Program., vol. 58, pp. 28–56, 01 2005.

[7] S. Almagor, D. Chistikov, J. Ouaknine, and J. Worrell, “O-minimal invariants for discrete-time dynamical
systems,” ACM Trans. Comput. Logic, vol. 23, jan 2022.

[8] M. Muller-olm and H. Seidl, “Precise interprocedural analysis through linear algebra,” vol. 39, pp. 330–341,
01 2004.

[9] S. de Oliveira, S. Bensalem, and V. Prevosto, “Polynomial invariants by linear algebra,” in Automated
Technology for Verification and Analysis: 14th International Symposium, ATVA 2016, Chiba, Japan, October
17-20, 2016, Proceedings 14, pp. 479–494, Springer, 2016.

[10] C. Kop and N. Nishida, “Term rewriting with logical constraints,” in Proc. FroCoS, pp. 343–358, 2013.

[11] A. Bundy, D. Basin, D. Hutter, and A. Ireland, Rippling: meta-level guidance for mathematical reasoning,
vol. 56. Cambridge University Press, 2005.

[12] D. Kapur and M. Subramaniam, “Lemma discovery in automating induction,” in Proc. CADE, pp. 538–552,
1996.

[13] D. Kapur and N. A. Sakhanenko, “Automatic generation of generalization lemmas for proving properties of
tail-recursive definitions,” in Proc. TPHOLs, pp. 136–154, 2003.

[14] N. Nakabayashi, N. Nishida, K. Kusakari, T. Sakabe, and M. Sakai, “Lemma generation method in rewriting
induction for constrained term rewriting systems,” Computer Software, vol. 28, no. 1, pp. 173–189, 2010.

[15] P. Urso and E. Kounalis, “Sound generalizations in mathematical induction,” TCS, vol. 323, no. 1-3, pp. 443–
471, 2004.

[16] T. Walsh, “A divergence critic for inductive proof,” JAIR, vol. 4, pp. 209–235, 1996.

[17] C. Kop, “Termination of LCTRSs,” in Proc. WST, 2013.

A Array programs

A signature and interpretation for arrays was introduced in [3]: for each sort ι introduce a sort array(ι)
and theory symbols sizeι : [array(ι)]⇒ int, selectι : [arrayι × int]⇒ ι , storeι : [array× int× ι]⇒ array(ι)

12 Lemma Generation Methods for RI on LCTRSs

where everything is interpreted as expected. For example Iarray(ι) = I∗
ι and, for a = ⟨a0, . . . ,an−1⟩ define

J (storeι)(a,k,v) = ⟨a0, . . . ,ak−1,v,ak+1, . . . ,an−1⟩ if 0 ≤ k < n and J (storeι)(a,k,v) = a otherwise.

When working with arrays it is convenient to have bounded quantifications because they allow
us to express quantified statements with a parametrized range of quantification, such as (∀0 ≤ i <
n)(select(a, i) ̸= 0), where we have a range parameter n. For our purposes, bounded quantifications are
important because they are often necessary to express a generalization of a divergence. A method to
automatically generate such generalizations from the divergence was introduced by [3]. We will not
explain how this works, but we will use the bounded quantification it generates in the following example:

The LCTRS below represents two programs whose input is an array a of size l, returning the reverse
of a. Both programs first allocate an array r of size l which is then filled with the elements from a in
reversed direction. Here, revU fills in upwards direction whereas revD fills in downwards direction.

For readability we write s(a) instead of size(a), and a[i] instead of select(a, i).

reverseU(a, l)→ revU(a,r, l,0) [s(r) = l]

revU(a,r, l, i)→ revU(a,store(r, i,a[l − i−1]), l, i+1) [i < l]

revU(a,r, l, i)→ return(r) [i ≥ l]

reverseD(a, l)→ revD(a,r, l, l) [s(r) = l]

revD(a,r, l, i)→ revD(a,store(r, i−1,a[l − i]), l, i−1) [i > 0]

revD(a,r, l, i)→ return(r) [i ≤ 0]

We wish to prove that revU(a, l) ≈ revD(a, l) [l > 0] but get a simple divergence shape (revU(a,r, l, i),
revD(a,q, l, I)) with Vdiv = {r, i,q, I}, Vinit = {l} and divergence substitution χ = [r := store(r, i,a[l −
i− 1]), i := i+ 1, q := store(q, I − 1,a[l − I]), I := I − 1]. Since q and r are arrays (and not integers)
we cannot directly include them into the divergence matrix. We remove r and q from the divergence
pattern and the remaining divergence variables are only i and I. Then the affine divergence matrix is

given by L =

1 1 l −1
1 2 l −2
1 3 l −3

 with ker(L) = span{(l,−1,−1)}, corresponding to l − i− I = 0. This

yields an equation revU(a,r, l, i)≈ revD(a,q, l, I) [l = i+ I ∧ s(r) = s(q) = l > 0], which is not a lemma
yet. We apply the method from [3] to generate the bounded quantifications. Together with InGen
this gives us the following equation revU(a,r0, l, i0) ≈ revD(a,q0, l, I0) [(∀0 ≤ j < i)(a[l − j − 1] =
r[j])∧ (∀I ≤ j < l)(a[l − j − 1] = q[j])∧ I0 = l − 1∧ l > 0∧ . . .]. Here, I0 = l − 1 is not an invariant,
because ϕ ∧ψEXP ∧ I0 = l −1 =⇒ χ(I0) = χ(l −1) is not universally valid. Still, the equality contains
useful information: I0 = l −1 together with l > 0 implies I0 ≥ 0, where I0 ≥ 0 is an invariant. Indeed, the
SMT solver will confirm that ϕ ∧ψEXP ∧ I0 ≥ 0 =⇒ χ(I0)≥ χ(0). We obtained the following lemma, by
which we can prove revU(a, l)≈ revD(a, l) [l > 0].
Lemma: revU(a,r, l, i)≈ revD(a,q, l, I) [s(r) = s(q) = I+ i = l > 0∧ I ≥ 0∧ (∀0 ≤ j < i)(a[l− j−1] =
r[j])∧ (∀I ≤ j < l)(a[l − j−1] = q[j])]

Hagens, Kop 13

B Demonstration

The affine invariants of sum2(x)≈ sum3(x) can be calculated by executing the following commands

pkg install -forge symbolic-3.0.1.tar.gz

pkg load symbolic

syms x;

e0 = sym([x-1, x, 0]);

n=3;

d=1;

Invariants = invariants(n, d, @substitutionSumtwothree, e0);

Here, we call the function substitutionSumtwothree.m encoded by

function CHI = substitutionSumtwothree (Y)

CHI(1) = Y(1)-1;

CHI(2) = Y(2)+Y(1);

CHI(3) = Y(3)+Y(1);

endfunction

representing the substitution χ = [y := y−1, z′ := z′+ y, z := z+ y].
This produces the following output:

The monomial vector is given

by
1

Y11
Y12
Y13



The divergence matrix is given by
1 x-1 x 0

1 x-2 2·x-1 x-1

1 x-3 3·x-3 2·x-3
1 x-4 4·x-6 3·x-6


A basis for its kernel is given by
x

0

-1

1


Corresponding to the following invariants

Invariants = (Sym) -Y12 + Y13 + x = 0

	Introduction
	Preliminaries
	Program Equivalence by LCTRSs
	Generalization
	Generalization with matrix invariants
	Matrix invariants
	Generating additional invariants

	Discussion and future work
	Array programs
	Demonstration

