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In the context of functional programming/term normalization algorithms we discuss the optimization
problem of constructing the result of a sequence of rewrite steps, without computing all the interme-
diate terms. From a rewrite system we construct a so-called creeper trace transducer, which reads a
creeper trace while producing the desired answer. The transducer skips overlap between each pair of
subsequent rules, and in some cases a part of the trace can be disregarded altogether.

1 Introduction

In previous work [4] we described how a subterm pattern matching can be used for efficient term rewrit-
ing. This work gave rise to another optimization problem, best introduced by example. Consider the
rewrite rule R∗ : ∗(x,0)→ 0 and the following sequence of rewrite steps:

∗(u1,∗(u2,∗(u3,0)))−→ ∗(u1,∗(u2,0))−→ ∗(u1,0)−→ 0 .

In our context it is possible to discover which rules have to be applied at which positions, without
computing all intermediate terms. In this example, we can obtain an encoding of the steps given by
ε ·R∗ · 2 ·R∗ · 2.2 ·R∗ without rewriting any term. This creeper trace consists of pairs of positions and
rules, where the left-hand side of each rule overlaps the right-hand side of the next rule and the positions
creep up to the root of the term. If we are only interested in the final result, and not in the intermedi-
ates, it is more efficient to construct the result with the information in the creeper trace. In this example
many steps can be skipped, since we can immediately observe from ε ·R∗ that the result of the steps is 0.
Another example is found in the rule R+ : +(x,s(y))→ s(+(x,y)) and the following reductions:

+(u1,+(u2,s(u3)))−→+(u1,s(+(u2,u3)))−→ s(+(u1,+(u2,u3))) .

The successor symbol in the second term demonstrates overlap that can be skipped by only using the
creeper trace ε ·R+ ·2 ·R+.

In this paper we address this optimization problem in general. From an arbitrary rewrite system,
we construct a creeper trace transducer that reads the rules and the positions of a creeper trace, while
producing the result from top to bottom. The transducer can be used on many traces and many terms,
making transducer construction an excellent operation to perform at compile-time. In theory constructing
the result with the transducer is efficient since all duplicate work between subsequent overlapping rules
is skipped. Especially in rewrite systems with zero-element rules like ∗(x,0)→ 0 and or(x, true)→ true,
a lot of work can be skipped. Moreover, practical implementations of rewriting that support maximally
shared terms need to check whether a newly created term already exists in the term storage. Since the
transducers construct fewer intermediate terms, we also economize on such queries to the term storage.

The focus of this paper is on the explanation of the approach and the mathematical details. The
creeper trace transducer approach is designed to be used in a rewrite engine based on a subterm matching
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algorithm [4]. In this setting, one rewrite step can infer a creeper trace of length n in O(n) time if the
structure of the right-hand sides is embedded in the pattern matching automaton. The details of creeper
trace construction exceed the scope of this paper, as they require a thorough understanding of the subterm
pattern matching algorithm in [8] in order to expand upon it.

Related work Backward overlap is a well-known efficiency problem in functional programming. A lot
of research has been conducted in the context of Haskell [13] on deforestation [9, 10, 15, 16]: a program
transformation technique that yields a more efficient program by eliminating tree data structures. The
approach in this paper addresses the same problem in a completely different way, since no program
transformation is involved. Creeper trace transducers can be used in functional programming as well.

In the Spineless Tagless G-Machine [12] pattern matching with the ‘case (f x) of’ construction
is performed one operator at a time, which makes it feasible to economize and not write the constructors
of (f x). In [14] the GHC compiler is extended to support user-defined rewrite rules, thereby allowing
one to circumvent the overlap problem manually.

Origin tracking [7] shares some formalities with this paper since the formal goal can be seen as dual.
Instead of constructing the result, the subterms of the result are related to their origin in the start term.

Transducers are a popular topic in computer science [5]. This paper may be related to tree transducer
theory, in particular to streaming string/tree transducers [1, 2]. The existence of a clear connection is
unknown as of yet due to the specific nature of the algorithmic problem discussed in this paper.

2 Preliminaries

We recap some preliminaries on term rewriting [3]. Given a ranked alphabet F and a set of variables V,
the set of terms over F with variables in V is denoted by T(F,V). The variables of a term t are given
by vars(t). A ground term is an element of T(F, /0). A substitution is a mapping σ : V→ T(F,V). The
application of σ to a term t is denoted by tσ .

A position is a list of positive natural numbers. We use P to denote the set of all positions and
we use ε to denote the empty list; it is referred to as the root position. Given two positions p, q their
concatenation is denoted by p.q. Position q is deeper than position p, denoted p≤ q, iff there is a position
r such that p.r = q. Two positions p,q are disjoint iff p ̸≤ q and q ̸≤ p. On non-disjoint positions (say p
and p.q) we define their difference by p.q− p = q. Every term has a domain: a set of positions at which
it has function symbols or variables, assigned to it by the mapping D : T(F,V)→P(P). Similarly we
define the edge of a term E (t) to be the set of positions where it has variables. Given a position p∈D(t),
the subterm of t at position p is denoted by t|p. By t[u]p we denote the term obtained by replacing the
subterm of t at position p by term u. A pattern is a term ℓ ∈ T(F,V) \V. We say that t matches u iff
there is a substitution σ such that t = uσ . If, additionally, u is a pattern, we say that t overlaps u.

A rewrite rule is pair of terms ℓ,r denoted by ℓ→ r, such that ℓ is a pattern and vars(r)⊆ vars(ℓ). A
term rewrite system (TRS) is a finite, non-empty set of rewrite rules. A redex of t is a rule ℓ→ r and a
position p ∈ D(t) such that t|p matches ℓ. Such a redex is denoted by (ℓ→ r)@p. Term t rewrites to

t ′ by redex (ℓ→ r)@p, denoted by t ′
(ℓ→r)@p←−−−−− t, if and only if there is a term u with p ∈ D(u), and a

substitution σ such that t = u[ℓσ ]p and t ′ = u[rσ ]p. The notation t ′
(ℓ→r)@p←−−−−− t is unconventional, but for

most of the paper it is more intuitive since we will read sequences of rewrite steps from left to right.
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Figure 1: Reducing t0 in two overlapping steps. The matching left-hand sides are surrounded by dashed
lines; the corresponding right-hand sides are surrounded by dots.

3 Creeper traces in rewriting

We discuss the notion of traces of overlapping rules by starting with the textbook example of addition
and multiplication on natural numbers: the TRS Rnat consisting of the following rules.

R1 : +(x,0)→ x R2 : +(x,s(y))→ s(+(x,y))

R3 : ∗(x,0)→ 0 R4 : ∗(x,s(y))→+(x,∗(x,y))

Consider for example t0 = s(∗(u1,+(u2,s(u3)))) and the sequence of reductions in Figure 1. Rewriting t0
with redex R2@1.2 yields t1 = s(∗(u1,s(+(u2,u3)))). The successor symbol that was ‘pushed up’ creates
a new redex R4@1. It can be used to obtain t2 = s(+(u1,∗(u1,+(u2,u3)))). Observe that the successor
symbol in the intermediate term t1 at position 1.2 merely serves as a conduit by enabling an additional
step to t2. A matching algorithm can combine the new right-hand side with the context of the redex (the
multiplication symbol) and immediately yield another match, without computing the intermediate term.

In this paper we assume that such a matching algorithm provides us with a trace: a sequence of rules
and positions that can be applied to a starting term. In this example we have the trace 1 ·R4 · 1.2 ·R2 of
t0. We describe a transducer that can read this trace while producing the output. When rules overlap as
in the previous example, this method always saves some work. We save a lot of work in more extreme
examples such as the term +(u1,∗(u2,∗(u3,0))) and the trace ε ·R2 ·2 ·R4 ·2.2 ·R4. Computing the result
naively requires three steps:

u1
R2@ε←−−−+(u1,0)

R4@2←−−−+(u1,∗(u2,0))
R4@2.2←−−−−+(u1,∗(u2,∗(u3,0))) .

By carefully performing the steps in the reverse order we can see that after reading the position ε followed
by the rule R2, the result should be u1. The rest of the trace is irrelevant.

Let t0 be a term. A trace of t0 is a finite, non-empty word of alternating positions and rules pn ·Rn ·
pn−1 ·Rn−1 · . . . · p1 ·R1 ∈ (P ·R)+ such that tn

Rn@pn←−−−− . . .
R1@p1←−−−− t0 for some sequence of terms tn, . . . , t1.

We call t0 the start and tn the result of said trace. We present the start t0 on the right and the result tn on
the left, since we will read the trace from left to right.

Currently the method is limited to a special kind of overlapping traces [6, 11]. Let ℓ→ r be a rule and
let p ∈ D(ℓ). The backward overlap set of ℓ→ r with respect to p is the set of rules whose right-hand
side overlaps ℓ|p:

BOS(ℓ→ r, p) = {ℓ′→ r′ ∈R | r′ overlaps ℓ|p} .

A trace pn ·Rn · . . . · p1 ·R1 ∈ (P ·R)+ is called a creeper trace iff for all i < n we have pi ≤ pi−1
and Ri−1 ∈ BOS(Ri, pi−1− pi). That is, the positions are of increasing depth and every right-hand side
overlaps the previous left-hand side at the difference in positions.
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Figure 2: The creeper trace transducer for Rnat .

In Figure 1 we have that 1 ·R4 ·1.2 ·R2 is a creeper trace of t0, since 1≤ 1.2 and the right-hand side
s(+(x,y)) of R2 overlaps the left-hand side ∗(x,s(y)) of R4 at position 1.2− 1 = 2. In Section 8 we
discuss some non-examples.

4 An example creeper trace transducer

In Figure 2 there is a transducer for Rnat . We explain its construction informally and give an example
run before proceeding with the details in the next sections. One step in the transducer consists of reading
a rule followed by a position or end. After a step it writes a term given by the substitution after the
position. From s0 we expect to read a rule and a position that has no overlap with the previously read
rule/position pair. From state s1 we expect to read a rule whose right-hand side overlaps the left-hand
side of rule R2 or R4 at position 2. This can only be R2, so s1 only has specified behaviour for this rule.

We interpret the transducer on t0 = s(∗(u1,+(u2,s(u3)))) and the trace tr = 1 ·R4 · 1.2 ·R2. To this
end we maintain a configuration that consists of four pieces of information.

• A subterm of t0, initially t0|1 = ∗(u1,+(u2,s(u3))). Some transitions copy a part of t0. Carefully
keeping track of the subterm guarantees that the correct part of t0 is copied along the run.

• The state, initially s0.

• The result under construction, called a writable term, initially t0[ωε ]1 = s(ωε). Until we finish the
run, this term contains write variables of the form ωp. Every transition yields a substitution on all
of the variables in this term.

• The trace with relativized positions, initially R4 · 2 ·R2 · end. A finite state machine cannot have
one transition for every position that can occur in a trace, so we use a relativized (or normalized)
version where every position pi is replaced by pi− pi+1. In this case relativize(1 ·R4 ·1.2 ·R2) =
R4 · 2 ·R2 · end. Three things changed: the initial position is removed, position 1.2 is replaced by
1.2−1 = 2, and there is an end symbol after the last rule.

So initially we have a configuration ⟨t,s,u,τ⟩ where:

t = ∗(u1,+(u2,s(u3))) s = s0 u = s(ωε) τ = R4 ·2 ·R2 · end .
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Figure 3: Constructing the result from top to bottom with the transducer for Rnat .

The following steps can be tracked in Figure 3. From state s0 we read the rule R4 followed by relative

position 2. We follow the topmost edges s0
R4−→ • 2/ωε 7→+(&1,∗(&1,ω1))−−−−−−−−−−−−−→ s1. The latter edge carries a

substitution, making us replace all occurrences of ωε in the writable term by +(&1,∗(&1,ω1)). This is
the right-hand side of the rule that we just read, but the variables are different. The variable ω1 plays the
same role as ωε in the sense that it indicates where we are going to write next. Furthermore there are
references, i.e. variables of the form &1. They indicate which subterm of t we have to copy. In this case
we need to substitute &1 by t|1 = u1. The new result under construction is thus s(+(u1,∗(u1,ω1))), the
new state is s1 and the relative trace only has two symbols left. The new subterm of t is t|2 since we read
position 2, landing us in the following configuration:

t =+(u2,s(u3)) s = s1 u = s(+(u1,∗(u1,ω1))) τ = R2 · end .

From state s1 we read the remainder of the trace R2 ·end, and follow the edges s1
R2−→• end/ω1 7→+(&1,&2.1)−−−−−−−−−−−−→

⊥. This step yields the substitution ω1 7→ +(&1,&2.1). Note the difference from the previous step.
Previously we wrote the entire right-hand side of the rule we just read, and now we only write a part of
the right-hand side of R2. The successor symbol is not written, because it has been used by rule R4.

When we apply the substitution to u, we obtain s(+(u1,∗(u1,+(&1,&2.1)))). This term no longer
has any write variables. To obtain the final result we resolve the references by replacing &1 by t|1 = u2,
and replacing &1.2 by t|1.2 = u3, resulting in s(+(u1,∗(u1,+(u2,u3)))).

Another example is the term +(u1,∗(u2,∗(u3,0))) and the creeper trace ε ·R1 · 2 ·R3 · 2.2 ·R3. We
follow the same initialization as in the previous example. The initial configuration is

t =+(u1,∗(u2,∗(u3,0))) s = s0 u = ωε τ = R1 ·2 ·R3 ·2 ·R3 .

From s0 we read R1 ·2 and follow the edges s0
R1−→ • 2/ωε 7→&1−−−−−−→⊥, and do not end up in a new state. Then

we apply the obtained substitution to u and get &1, which is simply a reference. Dereferencing with
respect to t yields t|1 = u1, which is the desired result.

5 Formal definitions

In this section we formalize terms with references, dereferencing, writable terms, relativized traces, and
creeper trace transducers. In the next section we discuss transducer construction.

Terms with references The standard definition of the single step rewrite relation uses substitutions
and variable bindings. A rewrite rule ℓ→ r requires that every variable of r occurs in ℓ. This is necessary
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to compute the result tc[rσ ] of a rewrite step originating from tc[ℓσ ]. For the operational nature of this
paper it is necessary to map every variable of r to a position in ℓ where this variable occurs. A term
with references is a term where some variables are positions (i.e. an element of T(F,V∪P), assuming
V∩P= /0). We denote the occurrence of a position as a variable by &p.

With every rewrite rule ℓ→ r we associate an originated right-hand side origin(ℓ→ r) = rσ , where
the substitution σ : vars(r) → E (ℓ) yields for every variable of r, the shortest, then leftmost posi-
tion where this variable occurs in ℓ. An example that we have already seen is origin(+(x,s(y)) →
s(+(x,y))) = s(+(&1,&2.1)). A more interesting example is the rule R : f (g(x,y),x,x)→ g(y,x), with
origin(R) = g(&1.2,&2). The variable x could be mapped to position 1.1 or 3, but we choose position 2
since it is shorter than 1.1 and it is left of 3.

Now we can operationally define the result of a specific rewrite step. Given a term with references
tr ∈T(F,V∪P) and a ground term t, define deref(tr, t) = tσ

r where σ(&p) = t|p for all position variables
&p ∈ P and σ(x) = x if x ∈ V. This operational definition is more convenient than using variable bind-
ings, and closer to an implementation. The following proposition states that dereferencing an originated
rule correctly characterizes a rewrite step.

Proposition 5.1. If t ′
ℓ→r@p←−−−− t then t ′ = t[deref(origin(ℓ→ r), t|p)]p.

Relativized traces One transition requires reading a rule Ri, followed by reading the difference be-
tween the position pi of that rule and the position pi−1 of the next rule. Instead of letting the transducer
compute this difference, we assume that we directly operate on the trace that has these positions readily
available. To this end, given a creeper trace tr = pn ·Rn · · · · · p1 ·R1 we define the relativized version of
tr, by relativize(tr) = Rn · qn−1 · · · · · q1 ·R1 · end where qi = pi−1− pi for all i < n. Note that there is a
special symbol indicating the end of the trace, and the prepending position pn is removed. It plays a role
during initialization, and is irrelevant for the rest of the computation.

Writable terms We use a reserved set of write variables Ω = {ωp | p ∈ P} to indicate where we con-
tinue to write. A writable term is an element of T(F,Ω) with at least one variable. In the interpretation of
the transducer, the position subscripts merely serve as identifiers, but in the construction of the transducer
they play an important role.

Creeper trace transducers Let T(F,X)V denote the set of substitutions from V to T(F,X). A creeper
trace transducer for a TRS R and write variables Ω is a 5-tuple (S,s0,ϕ,ψ,δ ) where:

• S is a set of states, including the initial state s0.

• ϕ : S×R ⇀ T(F,P)Ω is a partial termination function, yielding for every state and every rule that
can be read next in a trace, the terms that must be written on the write variables when reaching the

end of the trace. Instead of ϕ(s,R) = α we write s R−→ • end/α−−−→⊥.

• ψ : S×R×P⇀ T(F,P)Ω is a partial discard function, indicating that terms must be written, but

the end of the trace is not reached yet. Instead of ψ(s,R, p) = α we write s R−→ • p/α−−→⊥.

• δ : S×R×P ⇀ S×T(F,P∪Ω)Ω is a partial transition function. Instead of δ (s,R, p) = (s′,α)

we write s R−→ • p/α−−→ s′.

Recall Figure 2. For a clean graphical notation we use the black dot to group the edges per rule. The

termination function is displayed by edges accompanied by end. The edges s0
R1−→ • 2/ωε 7→&1−−−−−−→ ⊥ and
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s0
R3−→ • 2/ωε 7→0−−−−−→⊥ are discards. All the other edges specify transitions. Note that ϕ,ψ and δ are partial.

We only deal with creeper traces, so not every state can meaningfully support every rule.

Interpreting a transducer The configurations of a transducer are 4-tuples of the form ⟨t,s,u,τ⟩ where
t is a term, s is a state, u is a writable term, and τ is a relativized creeper trace. Consider a start term t0
and a creeper trace tr = pn ·Rn · . . . · p1 ·R1. The initial configuration is obtained by descending t0 to
arrive at the starting position pn, creating a writable term from t0 by replacing its subterm at position pn

by the write variable ωε , and relativizing the trace. Formally the initial configuration is given by

⟨t0|pn ,s0, t0[ωε ]pn , relativize(tr)⟩ .

Note the role of the prepending pn. It is removed upon relativization, and only used to obtain the correct
subterm of t0 and to create the writable term. We define the interpretation of a transducer by a step
relation⇝ on configurations, with the possibility to terminate in a term:

⟨t,s,u,R · end⟩⇝ deref(uα , t) if s R−→ • end/α−−−→⊥

⟨t,s,u,R · p · τ⟩⇝ deref(uα , t) if s R−→ • p/α−−→⊥

⟨t,s,u,R · p · τ⟩⇝ ⟨t|p,s′,deref(uα , t),τ⟩ if s R−→ • p/α−−→ s′

After every step the position variables are dereferenced locally with respect to t, after which t is de-
scended to position p to preserve correct dereferencing.

6 Construction of a creeper trace transducer

We define a creeper trace transducer for an arbitrary rewrite system R. We define the state space formally
by identifying every state s by a subset of the TRS denoted by ρ(s), and a set of offset positions π(s).
These determine how ϕ ,ψ and δ are defined on s. For every rule R∈ ρ(s) we define ϕ(s,R) and for every
position q that has a non-empty backward overlap set w.r.t. R, we define either ψ(s,R,q) or δ (s,R,q).
The offsets define which part of the next right-hand side we still have to write. They tell us which write
variables are in a result term under construction. For the initial state we fix ρ(s0) = R and π(s0) = {ε}.
A creeper trace can start with any rule, and initially the only write variable is ωε .

6.1 Terminations, discards and transitions from a state

We define the termination, discard, and transition functions on an arbitrary state s with π(s)= {p1, . . . , pn},
for every rule R ∈ ρ(s).

Termination function The termination function determines what should be done when the end of a
trace is reached by specifying what should be written on the remaining write variables. The resulting
substitution is defined by

ϕ(s,R) = [ωp1 7→ origin(R)|p1 , . . . ,ωpn 7→ origin(R)|pn ] .

The positions p1, . . . , pn are disjoint, so the remainder of origin(R) is divided over the write variables.
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Discard function Recall that we only have to deal with creeper traces. After reading rule R we can
expect to see the end symbol or we can see a relative position q. In the latter case, BOS(R,q) must be
non-empty, and we can expect to read another rule that must be in this backward overlap set.

Given a position q such that BOS(R,q) ̸= /0 we either define a discard ψ(s,R,q) or a transition
δ (s,R,q). A rule R discards along position q iff origin(R) has no position variable &p such that p ≥ q.
Whenever a pair R ·q occurs in a relativized trace and R discards along q, the run is finished immediately
by a discard. For example, the rules ∗(0,y)→ 0 and +(0,s(y))→ s(y) both discard along position 1. As
we read an overlapping trace from left to right, the result that we aim to write is independent of what we
write at position 1. The rule +(0,s(y))→ s(y) does not discard along 2 since its originated version is
s(&2.1).

The discard function is defined similarly to the termination function, with the exception that we also
need a position as an argument. For all rules R ∈ ρ(s) and all q such that BOS(R,q) ̸= /0 and R discards
along position q, we define

ψ(s,R,q) = [ωp1 7→ origin(R)|p1 , . . . ,ωpn 7→ origin(R)|pn ] .

Transition function If R does not discard along position q then we write the parts of origin(R) similarly
to how we do in the termination and discard function. The main difference is that we need to substitute
some position variables of origin(R) by write variables to indicate where we continue to write next. Since
the rule does not discard along q, there is at least one position variable &p such that p ≥ q. We convert
all of those to write variables ωp−q, and the other position variables remain the same. The state that is
reached upon following this transition is identified by rule set BOS(R,q) and its offsets are the positions
p−q that accompany the variables that we converted. Formally

δ (s,R,q) = (s′, [ωp1 7→ origin(R)|γp1
, . . . ,ωpn 7→ origin(R)|γpn

]) ,

where γ(&p) = &p if p ̸≥ q and γ(&p) = ωp−q if p ≥ q, and s′ is identified by BOS(R,q) and π(s′) =
{p−q |&p ∈ vars(origin(R))∧ p≥ q}.

Correctness For every creeper trace of some ground term, the constructed transducer produces the
correct result. The detailed proof of this claim features many pages of mostly equational reasoning. In
this extended abstract we give a sketch.

Theorem 6.1. Consider a rewrite system R and its constructed creeper trace transducer (S,s0,ϕ,ψ,δ ).
Let t0 be a ground term and suppose that tr = pn ·Rn · . . . · p1 ·R1 is a creeper trace of t0, inferring the

sequence tn, . . . , t1 such that tn
Rn@pn←−−−− . . .

R1@p1←−−−− t0. Then ⟨t0|pn ,s0, t0[ωε ]pn , relativize(tr)⟩⇝∗ tn.

Proof. (Sketch). By induction on the length of the trace. Suppose that the transducer handles all creeper
traces of length k correctly. Now let pk+1 ·Rk+1 · pk ·Rk · pk−1 ·Rk−1 · tr be a creeper trace of length k+1.

If there are transitions s0
Rk+1−−→ • pk−pk+1−−−−−→ s

Rk−→ • pk−1−pk−−−−−→ s′, then there is a transition s0
Rk−→ • pk−1−pk−−−−−→ s′

which is followed on the first step of the transducer run on pk ·Rk · pk−1 ·Rk−1 · tr. Then we apply the
induction hypothesis and use equational reasoning to establish what is needed.

We have to treat four base cases that are not covered by the induction step. These are the cases k = 1,
k = 2, and the cases where discarding happens as the first or second step. In each case we compute the
result written by the transducer and identify it with the required result, which can be written in terms of
origin and deref by Proposition 5.1.
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s1s0
Rd

⊥

end/ωǫ �→ +(∗(&1.2,&2), ∗(&2,&1.1))

Rd

end/ω1 �→ ∗(&1.2,&2)

ω2 �→ ∗(&2,&1.1)

1/ωǫ �→ +(∗(ω2,&2), ∗(&2,ω1))

1/ω1 �→ ∗(ω2,&2)

ω2 �→ ∗(&2,ω1)

⊥

Figure 4: The creeper trace transducer for {Rd}.

7 Two more intricate examples

The reader may have already verified that the transducer in Figure 2 is the correct transducer for Rnat .
We discuss two more complicated examples to make some details of the construction more apparent.

Dancing distributivity Consider the following rewrite rule, which combines distributivity and com-
mutativity in an intricate way:

Rd : ∗(+(x,y),z)→+(∗(y,z),∗(z,x)) .

The right-hand side of this rule overlaps its own left-hand side at position 1. The transducer for {Rd} is
displayed in Figure 4. State s0 is identified by rule set {Rd} and offsets π(s0) = {ε}. The transition to s1
is constructed as follows. We have origin(Rd) =+(∗(&1.2,&2),∗(&2,&1.1)) with positions 1.1 and 1.2

as variables being lower than 1. So we create a transition s0
Rd−→• 1/α−−→ s1, not a discard, where α is a sub-

stitution that operates on ωε as α(ωε) = +(∗(ω1.2−1,&2),∗(&2,ω1.1−1)) = +(∗(ω2,&2),∗(&2,ω1)).
The state s1 is identified by rule set ρ(s1) = {Rd} and offsets π(s1) = vars(α(ωε)) = {1,2}. This means
that every substitution we obtain from s1 must operate on the two variables ω1 and ω2. Indeed, following
the same construction with these offsets splits up the originated version of Rd in two parts. The transition

s1
Rd−→ • 1/β−−→ s1 is computed by setting β (ω1) = origin(Rd)|

[&1.27→ω1.2−1]
1 = ∗(ω1.2−1,&2) = ∗(ω2,&2),

and β (ω2) = origin(Rd)|
[&1.17→ω1.1−1]
2 = ∗(&2,ω1.1−1) = ∗(&2,ω1). The addition symbol is missing due

to the overlap with the rule that was followed to s1. Note that β (ω1) yields a writable term with variable
ω2 and β (ω2) yields one with variable ω1. The reader is invited to apply the transducer to the creeper
trace ε ·Rd ·1 ·Rd of term ∗(∗(+(u1,u2),u3),u4).

Alternative addition with zero Consider a rule that defines addition on zero, but only when its right
argument is headed by at least two successors.

R0ss : +(0,s(s(y)))→ s(s(y)) .

Figure 5 displays the transducer for this rule. This example shows that identifying states with a set of
rules is not sufficient. The right-hand side of R0ss overlaps its own left-hand side on two positions, which
results in three distinct states.

• State s0 is identified by the rule set ρ(s0) = {R0ss} and offsets π(s0) = {ε}.

• State s1 is identified by ρ(s1) = BOS(R0ss,2) = {R0ss} and π(s1) = {1.1}.

• State s2 is identified by ρ(s2) = BOS(R0ss,2.1) = {R0ss} and π(s2) = {1}.



10 Creeper Trace Transducers

⊥

s1

s0

end/ωǫ �→ s(s(&2.1.1))

2.1/ω1.1 �→ ω1

s2
2.1/ω1 �→ s(ω1)

2/ω1 �→ s(ω1.1)

R0ss

2/ω1.1 �→ ω1.1

R0ss

⊥

end/ω1 �→ s(&2.1.1)

end/ω1.1 �→ &2.1.1
⊥

R0ss

2/ωǫ �→ s(s(ω1.1)) 2.1/ωǫ �→ s(s(ω1))

Figure 5: The creeper trace transducer for {R0ss}.

8 Concluding remarks

In this paper we discussed creeper traces and a transducer that can read them so that we may exploit
overlap between rules. Recall from the definition of creeper trace that we require each right-hand side
to overlap the previous left-hand side. Given the rules R2 : +(x,s(y))→ s(+(x,y)), this means that
ε ·R2 ·2.1 ·R2 is not a creeper trace: the right-hand side s(+(x,y)) matches +(x,s(y))|2.1, but it does not
overlap, since y is a variable. It turns out that defining creeper traces and transducers with the backward
match set BMS(ℓ→ r, p) = {ℓ′ → r′ ∈ R | r′ matches ℓ|p} is a sufficient condition for completing the
correctness proof. In the transducer this results in many transitions going to the initial state.

In the future this work can be extended to support more kinds of traces. For example, an increasing,
non-overlapping trace can be observed in

s(u1)
R2@ε←−−−+(s(u1),0)

R2@1.1←−−−−+(s(+(u1,0)),0) .

The successor symbol in the result is not part of any of the involved right-hand sides, so the transducer
cannot write it. This is not a technically challenging limitation. Every increasing, non-overlapping trace
consists of at least two creeper traces that can be written in separate transducer runs. Supporting these
traces directly with a transducer should not be problematic.

Non-increasing traces are problematic for two reasons. First there are decreasing traces like

s(s(+(u1,u2)))
R2@1←−−− s(+(u1,s(u2)))

R2@ε←−−−+(u1,s(s(u2))) .

By reading from right to left it could also be possible to write the result in one sweep, but a general
construction needs to be elaborated thoroughly. It may be possible to convert a set automaton [8] into a
streaming tree transducer [2] so that creating the trace and writing the result is done by a single machine.

Lastly, there are disjoint traces in e.g. the TRS Rnat such as:

0 R1@ε←−−−+(0,0) R3@1←−−−+(∗(0,0),0) R3@2←−−−+(∗(0,0),∗(0,0)) .

This is not a creeper trace since positions 1 and 2 are disjoint. We can possibly generalize the current
work to creeper trees, for example ε ·R1 · [1 ·R3 || 2 ·R3], and create a transducer that supports parallel
writing.
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