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A transformation of concurrent programs with semaphore-based exclusive control and waiting queues
into logically constrained term rewrite systems (LCTRSs, for short) has been proposed. To represent
waiting queues, the transformation adopts a turn waiting system with number tickets, while the use
of usual lists is a straightforward approach. In this abstract, we show a list-based approach to wait-
ing queues and compare the two approaches by means of verification of race freedom of a simple
reader-writer example.

1 Introduction

In the last decade, approaches to program verification by means of logically constrained term rewrite
systems (LCTRSs, for short) [8] are well investigated [2, 13, 1, 11, 3, 4, 7, 5, 6]. LCTRSs are known
to be useful as computation models of not only functional but also imperative programs. To apply
techniques for LCTRSs to verification of practical programs such as automotive embedded systems, the
transformation in [2] has been extended to concurrent programs with semaphore-based exclusive control
and waiting queues [7].

The extended transformation does not use usual lists to represent waiting queues for semaphores,
which are sequences of process identifiers, e.g., natural numbers. Rewriting induction [12, 2] used as
a method for equivalence verification by means of LCTRSs makes a case analysis w.r.t. a reduction-
complete position which ensures the exhaustiveness of the case analysis. Decidability of reduction-
complete positions for constrained rewriting is not known yet. Even for decidable constraints, it is not
so easy to decide whether a position is reduction-complete along with recursive data structures such as
lists; it may be undecidable or not known yet. Note that we use stacks for function calls because such
stacks do not prevent us from checking reduction-completeness of LCTRSs obtained from imperative
programs.

To represent waiting queues for semaphores, the extended transformation adopts a so-called turn
waiting system with number tickets. A semaphore s in the transformed LCTRS is represented as a term
sem(vs,vd,vt) such that vs is a value of s, vd is a “display board” to permit processes to acquire the
semaphore, vt is a “ticket machine” to issue number tickets, and the display board and ticket machine
are implemented as counters. A process P is represented as a term of the form p(u,n) such that u is a state
of P, and n is either 0 or a positive integer: If n = 0, then P is active and does not wait for semaphore;
otherwise, n (> 0) is the ticket for s and P is waiting for s. If P wants to enter its critical section by
acquiring s and the value of s is more than 0, then P can acquire s and enter its critical section; if P

*This work was partially supported by JSPS KAKENHI Grant Number 18K11160 and DENSO Corporation.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Program 1: A simple reader-writer program with a counting semaphore.

1 semaphore s = 2;
2 int x = 0;
3

4 void reader(void)
5 {
6 while(true){
7 int y = 0;
8

9 down(&s);
10 y = x;
11 up(&s);
12 }
13 }

15 void writer(void)
16 {
17 while(true){
18 down(&s);
19 x = 1;
20 up(&s);
21 }
22 }

wants to enter its critical section but cannot acquire s, then P takes a ticket vt to wait for s and the ticket
machine prepares the next ticket by incrementing vt by 2;1 when P exits its critical section and releases
s, if another process is waiting for s with the ticket vd+2, then the waiting process acquires s to enter
its critical section, and otherwise, P increments s by 1.

Example 1 Let us consider Program 1 written in C language, together with a configuration consisting
of three processes such that the first and second processes execute reader, and the third one executes
writer: Functions are executed along the standard C semantics; processes are executed concurrently;
semaphore is a type synonyms of int; the range of int is the integers; global variables are accessible
from any process. For such a configuration, the LCTRS R1 in Figure 1 with the initial configuration
cnfg(p(rdr7,0),p(rdr7,0),p(wtr18,0),sem(2,1,3),0,0) is generated by a list-free approach in [7], where
rdr and wtr stand for reader and writer, respectively.

The list-free approach does not need any constraint in the theory of recursive data, and the repre-
sentation of waiting queues does not need any rule for list operations. On the other hand, any practical
advantage over the use of usual lists has not been shown yet.

In this paper, we show a list-based approach to waiting queues and compare the two approaches by
means of verification of race freedom of Program 1.

2 A List-Based Approach

The list-based approach gives each process a positive integer as its identifier and uses usual integer lists
consisting of list constructors cons : int× list → list and nil : list.

As in the list-free approach, a process P is represented as a term of the form p(u,n) such that u is
a state of P. Though, the use of the second argument n is different: If P is active, then the value is 0,
and otherwise, it is the process identifier of P. For example, if P is the first process and is waiting for a
semaphore, then the state of P is represented by a term of the form p(u,1).

1The reason of incrementing vt by 2 is the reuse of numbers when the maximum number of processes is fixed and we use
fixed-size bit vectors for the turn waiting system (see [7] for detail).
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

cnfg(p(rdr7,0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr9(0),0), p2, p3,sem(s,d, t),x,0)
cnfg(p(rdr9(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr10(y),0), p2, p3,sem(s′,d, t),x,0) [s ̸= 0∧ s′ = s−1]
cnfg(p(rdr9(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr9(y), t), p2, p3,sem(s,d, t ′),x,0) [s = 0∧ t ′ = t +2]
cnfg(p(rdr9(y),n), p2, p3,sem(s,d, t),x,1)→cnfg(p(rdr10(y),0), p2, p3,sem(s,d, t),x,0) [n = d ∧n ̸= 0]
cnfg(p(rdr10(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr11(x),0), p2, p3,sem(s,d, t),x,0)
cnfg(p(rdr11(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr7,0), p2, p3,sem(s,d′, t),x,1) [t ̸= d +2∧d′ = d +2]
cnfg(p(rdr11(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr7,0), p2, p3,sem(s′,d, t),x,0) [t = d +2∧ s′ = s+1]

cnfg(p1,p(rdr7,0), p3,sem(s,d, t),x,0)→cnfg(p1,p(rdr9(0),0), p3,sem(s,d, t),x,0)
...

cnfg(p1,p(rdr11(y),0), p3,sem(s,d, t),x,0)→cnfg(p1,p(rdr7,0), p3,sem(s′,d, t),x,0) [t = d +2∧ s′ = s+1]

cnfg(p1, p2,p(wtr18,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr19,0),sem(s′,d, t),x,0) [s ̸= 0∧ s′ = s−1]
cnfg(p1, p2,p(wtr18,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr18, t),sem(s,d, t ′),x,0) [s = 0∧ t ′ = t +2]
cnfg(p1, p2,p(wtr18,n),sem(s,d, t),x,1)→cnfg(p1, p2,p(wtr19,0),sem(s,d, t),x,0) [n = d ∧n ̸= 0]
cnfg(p1, p2,p(wtr19,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr20,0),sem(s,d, t),1,0)
cnfg(p1, p2,p(wtr20,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr18,0),sem(s,d′, t),x,1) [t ̸= d +2∧d′ = d +2]
cnfg(p1, p2,p(wtr20,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr18,0),sem(s′,d, t),x,0) [t = d +2∧ s′ = s+1]


Figure 1: The transformed LCTRS R1 for Program 1 [7].

A semaphore s is represented by a term sem(vs,w) such that vs is the value of s and w is the waiting
queues consisting of process identifiers. To add a process identifier to a waiting queue, the list operation
snoc : list× int → list which appends an element to a given list is introduced:

snoc(nil,y)= cons(y,nil)
snoc(cons(z,w),y)= cons(z,snoc(w,y))

To execute snoc atomically, we use the last argument of the configuration symbol cnfg as follows:

cnfg(. . . , sem(s,snoc(nil,y)), . . . ,2)→ cnfg(. . . , sem(s,cons(y,nil)), . . . ,0)
cnfg(. . . , sem(s,snoc(cons(z,w),y)), . . . ,2)→ cnfg(. . . , sem(s,cons(z,snoc(w,y))), . . . ,2)

In adding a process identifier n to the waiting queue of s, we call snoc in a right-hand side as follows:

ℓ→ cnfg(. . . ,sem(vs,snoc(w,n)), . . . ,2)

Since snoc is defined by rules of cnfg, the reduction of the obtained LCTRS for configuration terms is
topmost.

Example 2 We transform Program 1 into the LCTRS R2 in Figure 2. The initial configuration is
cnfg(p(rdr7,0),p(rdr7,0),p(wtr18,0),sem(2,nil),0,0). The last two rules represent snoc.

One may think that rules for snoc with cnfg are complicated and should be represented in the usual
way, i.e, by defining it locally by rules without cnfg. For the atomicity of the execution of snoc, we have
to prohibit the reduction of any process. To achieve it, a global definition of snoc—rules with cnfg—is
necessary. As mentioned before, such as definition makes the reduction for configuration terms topmost.
The topmost reduction reduces the search space for reducts, making verification tasks more efficient.
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

cnfg(p(rdr7,0), p2, p3,sem(s,w),x,0)→ cnfg(p(rdr9(0),0), p2, p3,sem(s,w),x,0)
cnfg(p(rdr9(y),0), p2, p3,sem(s,w),x,0)→ cnfg(p(rdr10(y),0), p2, p3,sem(s′,w),x,0) [s ̸= 0∧ s′ = s−1 ]
cnfg(p(rdr9(y),0), p2, p3,sem(s,w),x,0)→ cnfg(p(rdr9(y),1), p2, p3,sem(s,snoc(w,1)),x,2) [s = 0 ]

cnfg(p(rdr9(y),n), p2, p3,sem(s,cons(k,w)),x,1)→ cnfg(p(rdr10(y),0), p2, p3,sem(s,w),x,0) [n = k∧n ̸= 0 ]
cnfg(p(rdr9(y),n), p2, p3,sem(s,nil),x,1)→ error
cnfg(p(rdr10(y),0), p2, p3,sem(s,w),x,0)→ cnfg(p(rdr11(x),0), p2, p3,sem(s,w),x,0)

cnfg(p(rdr11(y),0), p2, p3,sem(s,cons(k,w)),x,0)→ cnfg(p(rdr7,0), p2, p3,sem(s,cons(k,w)),x,1)
cnfg(p(rdr11(y),0), p2, p3,sem(s,nil),x,0)→ cnfg(p(rdr7,0), p2, p3,sem(s′,nil),x,0) [s′ = s+1 ]

cnfg(p1,p(rdr7,0), p3,sem(s,w),x,0)→ cnfg(p1,p(rdr9(0),0), p3,sem(s,w),x,0)
...

cnfg(p1,p(rdr11(y),0), p3,sem(s,nil),x,0)→ cnfg(p1,p(rdr7,0), p3,sem(s′,nil),x,0) [s′ = s+1 ]

cnfg(p1, p2,p(wtr18,0),sem(s,w),x,0)→ cnfg(p1, p2,p(wtr19,0),sem(s′,w),x,0) [s ̸= 0∧ s′ = s−1 ]
cnfg(p1, p2,p(wtr18,0),sem(s,w),x,0)→ cnfg(p1, p2,p(wtr18,3),sem(s,snoc(w,3)),x,2) [s = 0 ]

cnfg(p1, p2,p(wtr18,n),sem(s,cons(k,w)),x,1)→ cnfg(p1, p2,p(wtr19,0),sem(s,w),x,0) [n = k∧n ̸= 0 ]
cnfg(p1, p2,p(wtr18,n),sem(s,nil),x,1)→ error
cnfg(p1, p2,p(wtr19,0),sem(s,w),x,0)→ cnfg(p1, p2,p(wtr20,0),sem(s,w),1,0)

cnfg(p1, p2,p(wtr20,0),sem(s,cons(k,w)),x,0)→ cnfg(p1, p2,p(wtr18,0),sem(s,cons(k,w)),x,1)
cnfg(p1, p2,p(wtr20,0),sem(s,nil),x,0)→ cnfg(p1, p2,p(wtr18,0),sem(s′,nil),x,0) [s′ = s+1 ]

cnfg(p1, p2, p3,sem(s,snoc(nil,y)),x,2)→ cnfg(p1, p2, p3,sem(s,cons(y,nil)),x,0)
cnfg(p1, p2, p3,sem(s,snoc(cons(z,w),y)),x,2)→ cnfg(p1, p2, p3,sem(s,cons(z,snoc(w,y))),x,2)


Figure 2: The LCTRS R2 with list-based waiting queues.

3 Comparison of List-Free and List-Based Approaches to Waiting Queues

To compare the list-free and list-based approaches, we solve the all-path reachability problem (APR
problem, for short) for the verification of race freedom [5]. An APR problem of a rewrite system is a
pair P ⇒ Q of state sets P,Q and is demonically valid w.r.t. the system if every finite execution path—a
reduction sequence starting with a state in P and ending with a terminating state (i.e., a normal form)—
includes a state in Q. A proof system for APR problems of LCTRSs, DCC, and its simplified variant
have been proposed in [1, 5, 6].

We have implemented the simplified proof system in a prototype of Crisys2,2 a equivalence ver-
ification system based on constrained RI for LCTRSs [9, 2]. Roughly speaking, Crisys2 checks the
reduction-completeness of a given constrained term t [φ ] by a sufficient condition which is the validity
of φ ⇒

∨
ℓ→r [ψ],t=ℓθ ,Y=Var(r,ψ)\Var(ℓ)(∃

−→
Y . ψ)θ .

Using the implementation, we made experiments of the race-freedom verification of R1 and R2
by reducing to APR problems, which were conducted with in a 3,600s timeout on a machine running
MacOS 13.4 on Apple M2 8 cores with 24GB memory; Z3 (ver. 4.12.1) [10] was used as an external
SMT solver. The APR problem for R1 was solved in 287.52s, and that for R2 was in 351.17s, where the
initial APR problems have been generalized in advance. Note that the APR problem without atomicity
of snoc was solved in 2138.17s. Table 1 shows the results of experiments for m readers and n writers
in Program 1, where the initial value of semaphore s is less than or equal to m+n. Note that for the case
where m+n ≥ 4, the implementation did not halt in 3,600s.

2https://www.trs.css.i.nagoya-u.ac.jp/~nishida/wpte2022/

https://www.trs.css.i.nagoya-u.ac.jp/~nishida/wpte2022/
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Table 1: Experimental results of m readers and n writers.
#reader #writer Init. value of s List-free approach List-based approach

1 1 1 1.41s 2.36s
2 1 1 199.78s 274.42s
2 1 2 287.52s 351.17s
2 1 3 128.03s 148.18s

4 Conclusion

The computation to prove the demonical validity of APR problems for the non-occurrence of runtime
errors often causes a state explosion because the search space is linear to multiplication of the numbers of
rewrite rules for processes. For this reason, the fewer the number of rewrite rules, the better the efficiency
of solving the APR problems. From the experiments in Section 3, the list-free approach in [7] has an
advantage over the list-based approach in Example 2 regarding efficiency of proving APR problems for
non-occurrence of a specified runtime error: The main reason of the efficiency must be the number of
rewrite rules. Our future work is to make more experiments to compare the two approaches by means of
e.g., runtime-error verification of practical larger programs.
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