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Python is a high level programming language that is strongly, but dynamically typed. In this paper
we propose a type inference framework to compute types for the variables within a Python program
by using static code analysis.

1 Introduction
Context and Motivation The present study introduces a framework that utilizes static code analysis to
determine possible types for program variables within Python functions. Python is a dynamically typed
programming language. This means that types are determined at runtime and are not explicitly declared.
Our endgame is to create a transpiler between Python and C++ programs. We want our transpiler to be as
similar to the Python source both in form and functionality. The main reason for this is that the developer
will be familiarised enough with the code to be able to debug and fix potential issues.

C++ offers direct control over memory management and this may lead to better resource usage, if
done correctly. Both programming languages have a large and experienced community. Python is one of
the more popular choices for people who want to learn a new programming language. Python works best
for scripting or prototyping different projects. But full-blown projects usually use C++ or other strongly
and statically typed programming languages. Before too long, the necessity of implementing a proof of
concept within a bigger solution will arise. Then, the prototype will need to be translated. And that is
the moment where we want to help.

This paper tackles the problem of static type inference for Python programs. Our objective is to
formalise and implement a prototype that is able to compute the possible variable types of a given Python
function.

In our current state we have a work in progress prototype that is able to extract the Control Flow
Graph (CFG) for a given Python function and perform data flow analysis on it [11]. We have a work-
ing framework that is able to perform type inference using test specifications for built-in functions and
operators. We are currently looking into expanding the set of specifications in order to treat more cases,
while testing the framework on more complex programs. We are currently using a minimal set of speci-
fications for operators and built-in functions so we can test and gradually improve the prototype’s scope
and accuracy.

Contribution We propose a static analysis framework that is based on the abstract interpretation and
dataflow analysis of Python code. Based on this formalisation we aim to create a prototype that is able
to provide type information for variables for a given Python function. We base our inference mechanism
on specifications extracted from the Python Language Reference [16].

For a given Python function received as input, our analysis has to provide the following information:

• the possible types of the input parameters and the return value, if any;
• the possible types of the local variables within the function;
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• the possible types of output parameters, if any.

In order to satisfy these requirements we introduce the following main concepts:

• type expressions, which are used to constrain type variables;
• abstract states, which combine the notions of type variables and type expressions to describe a program

point. These states describe the possible types of variables in that specific point of the program, without
losing information regarding the context in which types appear.

2 Related Work
Static Type Analysis by Abstract Interpretation of Python Programs. Raphaël Monat’s ECOOP
2020 article [8], which was topped off by his PhD thesis, Static Type and Value Analysis by Abstract
Interpretation of Python Programs with Native C Libraries [7], provides a very complex source of inspi-
ration. The goal of this work is to catch possible runtime type errors in Python programs before the code
is actually run. The proposed analysis is written using the MOPSA Project [9].

This work serves as an inspiration for what we aim to do. It is, however, context-sensitive and does
not have the capacity to analyze functions in isolation. Our aim is to try and give as much information
for a function without having to analyze the whole program. This is a very difficult task, but we believe
that it is possible to achieve a good enough result for our purposes.

For example, the article states that def f(a, b): return a + b is too risky to type infer on its
own because of the fact that the + operator might be overloaded by the programmer. This is understand-
able. However, our angle is different. We presume that the code is written in a decent manner. As a
first small step, we will consider that operator overloading does not take place and go with the built-in
specifications. As a second step, we could expand this with the preliminary analysis of the overloaded
operators in the program, calculate specifications based on them and add them to the already known
built-in specifications.

MyPy. MyPy [10] is a static type checker for Python. It is a popular tool, it is used by many program-
mers and it is actively maintained. It also serves as an inspiration for the type system that we want to
implement and has served as a starting point for other projects such as Nagini [5], which is a tool that
is used to check the memory safety and can ensure data race freedom. MyPy is used mainly as a type
checker for annotated functions. It can also be used for unannotated Python functions, but that is not
the purpose of the project. The upside is that it can analyse isolated functions. The downside is that it
does not provide information about the variables in every program point and it may not be able to infer
the types of some variables. This is because it is a checker that verifies if the types of the variables are
consistent with the types that are annotated.

For example, the following code snippet will be considered correct by MyPy:
d e f f ( a ) −> i n t :

b = a + 5
r e t u r n b

x = f ( 3 . 5 )

To be fair, there is no type error in this code. However, the type of the f function is annotated with float

instead of int and this could make a difference when we want to translate the function declaration in
C++.

Typeshed. Typeshed [15] is a collection of stubs that provide type annotations to the Python standard
library and to some popular third-party libraries. The stubs follow the rules defined in the PEP483 Python
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Enhancement Proposal [13]. It is used by many projects to check types for functions that are imported
from these libraries. It is also used by IDEs like JetBrains PyCharm [14] or type checkers, like MyPy.

We are taking into consideration using the information from Typeshed in our own inference mech-
anism in the future. However, we have to pay attention to the fact that some type annotations may be
too generic. For example, def append( self , __object : _T) −> None: ... from the list class does not
provide any information about the fact that the function will add the type of the __object parameter to
the list.
Pytype. The Pytype project is actively maintained and is even used by Google to type-check their
programs. Its capabilities are not limited to type checking. It can also be used to detect typos or other
common mistakes. By default, Pytype generates a pyi file that contains annotations for every function
and variable within the code [2]. The annotations follow the guidelines imposed by PEP483 [13].

When it comes to functions, Pytype can be a little too generic. For example, if we provide the
following as input:

d e f f ( a , b ) :
c = a + b
r e t u r n c

we get this output:

# ( g e n e r a t e d wi th −− q u i c k )
from t y p i n g i m p o r t Any
d e f f ( a , b ) −> Any : . . .

What we do is a little different. For a function with input parameters we try to infer their possible types
based on the specifications of builtin operations and functions that use them as parameters.
Scalpel. Another worthy mention is the more recent Scalpel Framework [6]. It is a very interesting
project that is worth keeping an eye on. It is a framework that is designed to run many types static
analyses for Python programs, not just particularly type inference. It is at an early stage in development,
but it is actively maintained.
Nuitka. Nuitka is a Python compiler that is written in Python [12]. Its objective is to provide a re-
placement for the Python interpreter. It translates Python code into C code and its aim is to compile a
standalone executable, optimized for speed. Their builtin type inference is not yet matured, although
there are discussions about it which we will have to keep in focus.
Codon. Codon, like Nuitka, is a very interesting Python compiler that focuses on performance [3].
It compiles Python into a standalone executable, but it does not yet work for all of Python’s syntax.
As far as type inference goes, heterogenous container support is still on the roadmap. It also accepts
contributions, therefore we will keep it in focus, also.

3 Proposed Framework
We propose a framework that does type inference for program variables in Python functions. Program
variable types are inferred based on specifications for the operations and functions that they are employed
in. Each function call and operation adds a set of constraints to the possible types of program variables.
The type inference problem is done by solving these constraints. Specifications for builtin operations and
functions are introduced manually and are based on the Python Library Reference [16]. Dataflow analysis
is used to gather constraints in every program point. The objective of dataflow analysis is to provide a
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fact for every program point, which is valid whenever that point is reached. Dataflow analysis problems
are either forward or backward problems. For every program point, a forward problem computes facts
based on its predecessor facts. On the other hand, a backward problem computes facts for a program
point based on information held by the successors of that point. Our analysis is a forward problem. As
per Nielson et al. [11], an instance of a dataflow problem consists of:
• a Control Flow Graph (CFG), that is a directed graph where each node represents a statement and each

edge represents the control flow between statements;

• a complete lattice D, which is the domain of dataflow facts assigned to each program point;

• an initial dataflow fact, which specifies the fact that holds at the start of the program (because ours is a
forward problem);

• a join operator that, for a CFG node, combines information from incoming edges;

• a dataflow transfer function ϕi ∶D→D for each node i in the CFG, which defines the effect of executing
the statements in the node i.

The domain of dataflow facts is defined by abstract states. An abstract state assigns a possible type
for each program variable, based on constraints gathered throughout code analysis. The basic building
blocks of abstract states are type expressions. To represent program variable types we use a combination
builtin Python types (like int, float, str, list and so on), sum types and type variables. Builtin Python types
are generally used to represent cases where a program variable can be assigned a single type. Sum types
are used to represent cases where a program variable must hold multiple types symultaneously and to
describe elements inside an heterogenous container. Type variables are used in cases where the possible
type of a program variable is a parametric type. The objective is to describe types that can be easily
translated to C++. In C++, unions describe sum types and type variables are used in templates to enable
parametric polymorphism. Our framework describes possible types for program variables through type
expressions. The following notations are used to define type expressions:
• PT is the set of all builtin Python types;

• TV is the set of all type variables;

• ⊕ is the sum type operator. It is used to represent cases where a program variable can hold multiple
types simultaneously. For example, int⊕float represents a type able to hold both int and float;

Definition 1. Type expressions te are defined by the following grammar:

c ∶∶= list ∣ set ∣ tuple

te ∶∶= pt ∣ tv ∣ te⊕ te ∣ c⟨te⟩ ∣ dict⟨te, te⟩ ∣ � ∣ ⊺

where pt ∈ PT and tv ∈ TV .

The notation c⟨te⟩ is used to describe generic containers. For example, list⟨int⟩ describes an homogenous
list that contains integers, while list⟨int⊕ float⟩ describes an heterogenous list that can contain both
integers and floats (e.g. [3, 3.5]). In the notation dict⟨te, te⟩ the first type expression describes the
type of the keys and the second describes the type of the values. � represents the bottom type. There are
no cases where a program variable can be assigned the bottom type. This type is used to describe the
type of an unitialized program variable or a type that cannot be inferred. ⊺ represents the top type, which
describes every possible type. The top type is defined by the sum type of every possible type expression.
Type variables are named using the syntax T∗ (for example: T1, Ta, T ?1 etc.).

Below are some examples in which type expressions are used to describe various variable types
within a program:
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Example 1.
a = 3
a = 3 . 5

Python allows for a variable to be assigned multiple types. The inferred type of a is int⊕float because
it can hold both integer and float values.

Example 2.
a . pop ( )
a . append ( 3 )

From the pop function call the inferred type of a is list⟨T ′a ⟩. The type variable T ′a represents the type
of the elements in the list. This function call works for any type of element that is contained in a. After
the append function call the inferred type of a becomes list⟨T ′a ⊕ int⟩. This type expression describes
the fact that whatever the type contained by a was before the append call, it must now also hold integer
values.

Over type expressions we define the partial order ⊑ as follows:

te ⊑ te tei ⊑ te1⊕ te2
i = 1,2

tei ⊑ te′i
te1⊕ te2 ⊑ te′1⊕ te′2

i = 1,2

� ⊑ te te ⊑ ⊺
te ⊑ te′

c⟨te⟩ ⊑ c⟨te′⟩
te1 ⊑ te′1, te2 ⊑ te′2

dict⟨te1, te2⟩ ⊑ dict⟨te′1, te′2⟩

where te, tei and te′i are type expressions and c⟨te⟩ represents a container type that has elements of the
type given by the type expression te. For example, list⟨int⊕float⟩ is a list that contains elements that can
be both integers and floats.

A type expression is deemed lesser than another if it provides more precise information. Note that not
all type expressions are comparable. In certain instances, it may not be possible to assert that a particular
type expression is more accurate than another:

• two different basic Python types are not comparable. For example, we cannot compare str and
float;

• two different type variables are not comparable;

Below are some examples of comparable and incomparable type expressions:

• int⊕float ⊑ int⊕float⊕ str;

• int⊕Ta ⊑ int⊕float⊕Ta;

• Ta ⊑ Ta⊕Tb;

• Ta and Tb are not comparable because they represent different type variables;

• int⊕float and int⊕ str are not comparable because float and str are different basic Python types,
which are not comparable.

Once the partial order ⊑ has been defined, it is possible to use the join and meet over type expressions.
Here are several examples of how these operators are computed:

• int⊕float⊕ str⊓ int⊕ str = int⊕ str;

• int⊕float⊕ str⊕Tb⊓ int⊕ str⊕Tb = int⊕ str⊕Tb;
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• int⊓float = �;
• Ta⊕ int⊓Tb⊕float = �;
• int⊕float⊔ int⊕ str = int⊕float⊕ str;

• int⊕float⊕Tb⊔ str⊕Tc = int⊕float⊕ str⊕Tb⊕Tc.
A constraint over a type variable is an expression of the form tv ⊑ te, where tv is a type variable and

te is a type expression. It defines the greatest type expression that a type variable may be substituted
with. A set of constraints that need to be satisfied simultaneously over type variables describe a context.
A context ctx is an expression of the following form:

ctx = tv1 ⊑ te1∧ tv2 ⊑ te2∧ . . .∧ tvn ⊑ ten

Examples of contexts:
• Ta ⊑ int⊕float∧Tb ⊑ str

• Ta ⊑ int⊕float⊕Tb∧Ta ⊑ float∧Tb ⊑ int⊕ str ≡ Ta ⊑ ((int⊕float⊕Tb)⊓(float))∧Tb ⊑ int⊕ str
Note that the constraint obtained by multiple constraints applied over the same type variable is equivalent
to their greatest lower bound.

Solving a type variable in a context means finding a type expression that satisfies all constraints
applied to that type variable. Constraints may have multiple solutions. The one that we keep is the least
upper bound of all minimal solutions. Examples:

• for Ta ⊑ str, our solution is Ta = str;

• for Ta ⊑ int∧Ta ⊑ Tb we deduce Ta = int. This generates a new constraint: int ⊑ Tb, which means
that Tb ⊑ int⊕T ′b . This results in Tb = int⊕T ′b , where T ′b is an unconstrained type variable;

• for Ta ⊑ list⟨int⊕float⟩∧Ta ⊑ list⟨int⊕Tb⟩ we deduce Ta = list⟨int⊕float⟩ and we generate a new
constraint: float ⊑ Tb. This means in Tb ⊑ float⊕T ′b , where T ′b is an unconstrained type variable;

• for Ta ⊑ int⊕float⊕ str, our solution is Ta = int⊕float⊕ str. In this case, the minimal solutions are
Ta = int, Ta = float and Ta = str;

• for Ta ⊑ int⊕float⊕Tb∧Tb ⊑ str:
– we know that Tb ⊑ str, therefore Ta ⊑ int⊕float⊕ str. This results in Ta = int⊕float⊕ str;
– Tb ⊑ str results in Tb = str;

• for Ta ⊑ int⊕float⊕Tb∧Tb ⊑ str⊕Ta:
– we know that Tb ⊑ str⊕Ta, therefore Ta ⊑ int⊕float⊕ str⊕Ta. The minimal solutions are

Ta = int, Ta = float and Ta = str. The least upper bound of these solutions is Ta = int⊕float⊕str;
– we know that Ta ⊑ int⊕float⊕Tb, therefore Tb ⊑ str⊕int⊕float⊕Tb. The minimal solutions are

Tb = str, Tb = int and Tb = float. The least upper bound of these solutions is Tb = str⊕ int⊕float;
A generic type variable assignment for an analyzed Python function is an expression of the form:

ta = pv1∶ tv1∧pv2∶ tv2∧ . . .∧pvn∶ tvn

where pvi iterate over all the program variables in the input function and tvi are type variables. In a
program point, an abstract state is described by one or more contexts alongside a generic type variable
assignment. A abstract state σ̂ is an expression of the form:

σ̂ = ta∧(ctx1∨ctx2∨ . . .∨ctxm)

where ctxi are contexts. Examples of abstract states:



A. Nacu 7

• (a∶Ta∧b∶Tb)∧((Ta ⊑ int∧Tb ⊑ int)∨(Ta ⊑ float∧Tb ⊑ float))
• (a∶Ta∧b∶Tb∧c∶Tc)∧(Ta ⊑ int⊕float∧Tb ⊑ int∧Tc ⊑ float)
An abstract state σ̂ has a solution ρ(σ̂), which describes its canonical form:

ρ(σ̂) = pv1∶ te1∧pv2∶ te2∧ . . .∧pvn∶ ten

where pvi are the program variables present in σ̂ and tei are the solutions for the type variables assigned
to pvi in σ̂ . The solution for a type variable in an abstract state is the sum of type expressions that
describe solutions for that type variable in every context. Examples:

• for σ̂ = (a∶Ta∧b∶Tb)∧((Ta ⊑ int∧Tb ⊑ int)∨(Ta ⊑ float∧Tb ⊑ float)) the solution is ρ(σ̂) = a∶ int⊕
float∧b∶ int⊕float

• for σ̂ = (a∶Ta ∧b∶Tb ∧ c∶Tc)∧ (Ta ⊑ int⊕float∧Tb ⊑ int∧Tc ⊑ float) the solution is ρ(σ̂) = a∶ int⊕
float∧b∶ int∧c∶float

For two abstract states σ̂1 and σ̂2, σ̂1 ⊑ σ̂2 if and only if ρ(σ̂1) ⊑ ρ(σ̂2). This means that, for every
entry pv∶ te1 in ρ(σ̂1), there exists pv∶ te2 in ρ(σ̂2) such that te1 ⊑ te2.

Two or more abstract states are normalized if the same program variable is assigned a type variable
with the same identifier in all abstract states. For example:

• the following abstract states are normalized:

σ̂1 = (a∶Ta∧b∶Tb)∧(Ta ⊑ int∧Tb ⊑ float)
σ̂2 = (a∶Ta∧c∶Tc)∧(Ta ⊑ str∧Tc ⊑ list⟨int⟩)
σ̂3 = (c∶Tc∧d∶Td)∧((Tc ⊑ float∧Td ⊑ str)∨(Tc ⊑ int))

• the following abstract states are not normalized:

σ̂1 = (a∶Ta∧b∶Tb)∧((Ta ⊑ int∧Tb ⊑ int)∨(Ta ⊑ float∧Tb ⊑ float))
σ̂2 = (a∶T1∧b∶T2)∧((T1 ⊑ int∧T2 ⊑ int)∨(T1 ⊑ float∧T2 ⊑ float))

Two or more abstract states can be normalized by renaming the type variables assigned to the same
program variable with a common identifier. There must be no name clashes with existing type variable
identifiers. A possible normalization for the two abstract states above is:

σ̂1 = (a∶T ′a ∧b∶T ′b)∧((T ′a ⊑ int∧T ′b ⊑ int)∨(T ′a ⊑ float∧T ′b ⊑ float))
σ̂2 = (a∶T ′a ∧b∶T ′b)∧((T ′a ⊑ int∧T ′b ⊑ int)∨(T ′a ⊑ float∧T ′b ⊑ float))

Subsequently, we define the join and meet operations over normalized abstract states. Let σ̂1 and σ̂2
be two normalized abstract states:

σ̂1 = ta1∧(ctx1∨ctx2∨ . . .∨ctxm)
σ̂2 = ta2∧(ctx′1∨ctx′2∨ . . .∨ctx′k)

σ̂1⊔ σ̂2 = (ta1∧ ta2)∧(⋁ctx∨⋁ctx′)
σ̂1⊓ σ̂2 = (ta1∧ ta2)∧(⋁(ctx∧ctx′))

where ctx and ctx′ iterate over the contexts in σ̂1 and σ̂2 respectively. Observations:
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• to join or meet two abstract states that are not normalized, their normalized form must be computed
first;

• a conjunction pv ∶ tv∧pv ∶ tv is equivalent to pv ∶ tv (i.e. a∶Ta ∧ a∶Ta ≡ a∶Ta). A similar rule applies
for a conjuction between the same type variable constraints (i.e. Ta ⊑ int∧Ta ⊑ int ≡ Ta ⊑ int).

As previously stated, the domain of dataflow facts is described by abstract states. The initial dataflow
fact in the analysis of a Python function is an abstract state where:

• all local variables are constrained by �. This denotes the fact that local variables are undefined at
the beginning of the analysis. This includes the special variable return that represents the return
value of the function;

• all function arguments are not constrained. We treat every function argument as a parametric type
at the beginning of analysis.

For example, if a function f(a, b) contains the local variable c in its body, the initial dataflow fact is
σ̂init = (a∶Ta∧b∶Tb∧c∶Tc∧ return∶Tr)∧(Tc ⊑ �∧Tr ⊑ �).

Specifications for functions and operators are also given through abstract states. For example:

• the specification of a function f that takes an integer and a float as arguments and returns a float is:

spec f = (p1∶T1∧p2∶T2∧ return∶Tr)∧(T1 ⊑ int∧T2 ⊑ float∧Tr ⊑ float)

• the specification of a function g that takes a list as input and modifies it by adding float elements
to it:

specg = (p1∶T1)∧(T1 ⊑ list⟨T2⊕float⟩)

Note: operations are considered specific cases of functions, where the operands are formal parame-
ters and the return value is the result of the operation.

Specifications are used to add constraints to an abstract state. Function calls and operators affect the
possible types of operands and return values. To better illustrate this process we will take the following
example:

Example 3.

• the current abstract state is: σ̂ = (a∶Ta∧b∶Tb)∧(Ta ⊑ int⊕float∧Tb ⊑ int⊕float);
• the expression to be analyzed is f(a, b);

• the specification for function f is spec f = (p1∶T1∧p2∶T2∧ return∶Tr)∧(T1 ⊑ float∧T2 ⊑ float∧Tr ⊑
float).

Applying a specification is done in the following manner:

• we obtain an intermediary abstract state σ̂
′ by instantiating the function arguments with the actual

arguments of the function call. This step substitutes:

– the name of the program variables in the specification with the name of the actual arguments of the
function call;

– the type variables assigned to the program variables in the specification with the type variables
assigned to the actual arguments of the function call. This affects both the generic type variable
assignments and the contexts. Additionally, the return program variable is substituted with the
expression that is the function call.
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For our example we obtain: σ̂
′ = (a∶Ta∧b∶Tb∧ f(a,b)∶Tr)∧(Ta ⊑ float∧Tb ⊑ float∧Tr ⊑ float)

Note: σ̂ and σ̂
′ are normalized abstract states.

• we compute the abstract state σ̂expr by computing the meet of the current abstract state σ̂ with the
newly obtained intermediary abstract state σ̂ ’. This will add the constraints given by specifications to
our input abstract state. If necessary, any newly added type variables are renamed so as to avoid name
clashes between type variables.

The abstract state obtained by applying spec f in our example is:

σ̂expr = σ̂ ⊓ σ̂
′

= (a∶Ta∧b∶Tb∧ f(a,b)∶Tr)∧(Ta ⊑ int⊕float∧Ta ⊑ float∧Tb ⊑ int⊕float∧Tb ⊑ float∧Tr ⊑ float)
= (a∶Ta∧b∶Tb∧ f(a,b)∶Tr)∧(Ta ⊑ (int⊕float∧⊓float)∧Tb ⊑ (int⊕float⊓float)∧Tr ⊑ float)
= (a∶Ta∧b∶Tb∧ f(a,b)∶Tr)∧(Ta ⊑ float∧Tb ⊑ float∧Tr ⊑ float)

In this case, Tr is a new type variable obtained as a result of applying the specification.

The information contained by the nodes in the CFG corresponds to a Python line of code. A line of
code usually contains a statement or expression. Every node has two program points: the entry of the
node and the exit. The entry of a node is the program point that corresponds to the state of the program
before executing the statement corresponding to the node. The exit of a node is the program point that
corresponds to the state of the program after executing the statement.

The transfer function for a CFG node computes the abstract state at the exit of the node based on
the abstract state at the entry of the node and the statement corresponding to the node. For different
statement types, the transfer function for a CFG node i is defined as follows:

• if the information in node i is an assignment pv = expr:

– we compute the abstract state σ̂expr that results from applying the specifications of the functions
and operators involved in expr to the abstract state σ̂

i
in at the entry of the node;

– the intermediary abstract state σ̂
′

out is obtained from σ̂expr by assigning to pv the type variable
assigned to the expression expr in σ̂expr.

– the exit abstract state σ̂
i
out is computed from σ̂

′

out by removing generic type variable assignments
that do not provide information for program variables and discarding all unused type variables.

If the expression in Example 3 were modified to the statement a = f(a, b), we would have:

σ̂expr = (a∶Ta∧b∶Tb∧ f(a,b)∶Tr)∧(Ta ⊑ float∧Tb ⊑ float∧Tr ⊑ float)
σ̂
′

out = (a∶Tr ∧b∶Tb∧ f(a,b)∶Tr)∧(Ta ⊑ float∧Tb ⊑ float∧Tr ⊑ float)
σ̂

i
out = (a∶Tr ∧b∶Tb)∧(Tb ⊑ float∧Tr ⊑ float)

• if the information in node i is an assignment pv = const:

– the intermediary abstract state σ̂
′ is obtained from const using the output of the Python type

function over the constant: σ̂
′ = const∶Tconst ∧(Tconst ⊑ type(const));

– we compute the abstract state σ̂const that results from the meet operation between the input ab-
stract state and σ̂

′: σ̂const = σ̂
i
in⊓ σ̂

′;
– σ̂

i
out is computed from σ̂const in the same fashion as for the assignment pv = expr
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For example:

σ̂
i
in = (a∶Ta∧b∶Tb)∧(Ta ⊑ float∧Tb ⊑ float)

nodei = (a = 3)
σ̂
′ = 3∶Tconst ∧(Tconst ⊑ int)

σ̂const = (a∶Ta∧b∶Tb∧3∶Tconst)∧(Ta ⊑ float∧Tb ⊑ float∧Tconstr ⊑ int)
σ̂

i
out = (a∶Tconst ∧b∶Tb)∧(Tconst ⊑ int∧Tb ⊑ float)

• if the information in node i is just an expression expr, σ̂
i
out is computed in the same way as for the

assignment pv = expr, but without the step where the type variable assigned to expr is assigned to pv
(σ̂ ′out = σ̂expr).

Having defined the basic notions of our type inference dataflow analysis framework, we will present
some illustrative examples of how the analysis works.

Example 4.
d e f f ( ) :

# i n i t i a l i n p u t env i ronment , a l l l o c a l v a r i a b l e s a r e u n d e f i n e d
↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧(Ta ⊑ �∧Tb ⊑ �∧Tr ⊑ �)
i f random . r a n d i n t ( 0 , 1 ) == 1 :

↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧(Ta ⊑ �∧Tb ⊑ �∧Tr ⊑ �)
a = 3
↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧(Ta ⊑ int∧Tb ⊑ �∧Tr ⊑ �)

# same i n p u t e n v i r o n m e n t f o r a l l b r a n c h e s o f t h e i f − c l a u s e
↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧(Ta ⊑ �∧Tb ⊑ �∧Tr ⊑ �)
e l s e :

↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧(Ta ⊑ �∧Tb ⊑ �∧Tr ⊑ �)
a = 3 . 5
↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧(Ta ⊑ float∧Tb ⊑ �∧Tr ⊑ �)

# g a t h e r i n f o r m a t i o n from bo th b r a n c h e s ( j o i n o p e r a t i o n )
↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧((Ta ⊑ int∧Tb ⊑ �∧Tr ⊑ �)∨(Ta ⊑ float∧Tb ⊑ �∧Tr ⊑ �))
b = a + 10
↓ (a∶Ta∧b∶Tb∧ return∶Tr)∧((Ta ⊑ int∧Tb ⊑ int∧Tr ⊑ �)∨(Ta ⊑ float∧Tb ⊑ float∧Tr ⊑ �))
r e t u r n b
↓ (a∶Ta∧b∶Tb∧ return∶Tb)∧((Ta ⊑ int∧Tb ⊑ int)∨(Ta ⊑ float∧Tb ⊑ float))

For this case we use the following specification for the + operator:

spec
+
= (p1∶T1∧p2∶T2∧ return∶T3)∧((T1 ⊑ int∧T2 ⊑ int∧T3 ⊑ int)∨(T1 ⊑ float∧T2 ⊑ float∧T3 ⊑ float))

This tells us that when the two parameters are integers, the return value of the operation is an integer.
Similarly, when the two parameters are floats, the return value is a float.

Example 2

d e f g ( a , b ) :
# i n i t i a l i n p u t env i ronment , a l l l o c a l v a r i a b l e s a r e u n d e f i n e d
# and a l s o t h e i n p u t p a r a m e t e r s a r e u n c o n s t r a i n e d
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↓ (a∶Ta∧b∶Tb∧c∶Tc∧ return∶Tr)∧(Tc ⊑ �∧Tr ⊑ �)
c = a + 3
××××Ö

(a∶Ta∧b∶Tb∧c∶Tc∧ return∶Tr)∧
((Ta ⊑ int∧Tc ⊑ int∧Tr ⊑ �)∨(Ta ⊑ float∧Tc ⊑ float∧Tr ⊑ �))

b . append ( c )

×××××Ö

(a∶Ta∧b∶Tb∧c∶Tc∧ return∶Tr)∧
((Ta ⊑ int∧Tc ⊑ int∧Tr ⊑ �∧Tb ⊑ list⟨Tc⊕T c

b ⟩)∨
(Ta ⊑ float∧Tc ⊑ float∧Tr ⊑ �∧Tb ⊑ list⟨Tc⊕T c

b ⟩))
r e t u r n c
××××Ö

(a∶Ta∧b∶Tb∧c∶Tc∧ return∶Tc)∧
((Ta ⊑ int∧Tc ⊑ int∧Tb ⊑ list⟨Tc⊕T c

b ⟩)∨(Ta ⊑ float∧Tc ⊑ float∧Tb ⊑ list⟨Tc⊕T c
b ⟩))

For this example we use the following specification for the append function:

specappend = (p1∶T1∧p2∶T2)∧(T1 ⊑ list⟨T c
1 ⊕T2⟩)

Based on this, we are also able to compute a specification for g as follows:

specg = (p1∶T1∧p2∶T2∧ return∶Tr)∧
((T1 ⊑ int∧T2 ⊑ list⟨T c

2 ⊕Tr⟩∧Tr ⊑ int)∨(T1 ⊑ float∧T2 ⊑ list⟨T c
2 ⊕Tr⟩∧Tr ⊑ int))

4 Conclusion and Future Work
Type inference for Python programs provides a way to better understand the source code. It also offers
valuable information for porting or adapting code into statically typed programming languages. We
proposed an inference system that is able to compute types by using dataflow analysis. We are currently
working on a prototype that is able to infer types for every program point. Based on specifications for a
limited set of builtin functions and operators, we managed to run analysis for a number of test functions.
This is still a work in progress, but we believe that the results are promising. We aim to continue adding
more specifications for widely used builtin functions and operators. We are also looking into real world
modules for test cases. Additionally, more test cases will also help use add safeguards to detect situations
where types cannot be inferred. We want to continue our research by finding a method to add support
for recursive functions. Furthermore, we plan to extend the inference system to support more complex
Python features, such as classes and decorators.
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